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The Forces Between
Molecules

Ut = Utut(R!:Rﬁs Sy R.n} (2 30) :
and it is always possible to write a formaj expansio o
I

UIOI(RlaRZJ b :Rﬂ) = Z U(zj(Rl R)
i}

pairs

When molecules are near enough to influence one another, we need to concern
ourselves with the balance between the forces of attraction and repulsion. We know
‘that such forces exist, for otherwise there would be nothing to bring molecules
- “together into the solid and {ifuid states, and all matter would be gaseous. A study
of the forces between atomic or molecular species constitutes the subject of inter-
molecular forces. - ’ . .
People have speculated about. the natre of intermolecular forces ever since the
ideas of atoms and molecules first existed. Qur present ideas, that molecules attract at
long range but repel strongly.at short range, began to emerge In the nineteenth
century due to the experimental work of Rudolf J. E. Clausius and Thomas Andrews.
It was not until the early twenticth century, when the principles of quantum me-
chanics became established, that we could truly say that we understood the detailed
mechanism of intermolecular forces. o

Although we talk about intermolecular forces, it is more usual and convenient to
focos on the mutial potential energy, discussed in Chapter 2. If we start with two
argon atoms at infinite separation, then their mutual potential energy at separation R
tells us the enerpy change -on-bringing the atoms together to that distance from
infinity. 7 ’ o '

Even for the simplest pair of molecules, the intermolecular mutval potential energy )
will depend on their relative orientations in addition to their separation. Perhaps you
can now see why the smdy of intermolecular forces bas taken so much effort by so
many brilliant scientists, over very many years.

triples

o 7 i

2 USRLR,RY) 4. 4 UPRyLRs,...,R,) (231)

involving distinct pairs, triple ..
_ R S, £1C. i

pair contributions, the UG)P s b The %

terms are refe&ed t -
. s are the three b o the
second are identically zer o s and

: : 0 on. Terms high,
o for the interaction between point charges e han the

3.1 The Pair Poteqti’a‘l :

So, o start with, we concern ourselves with two atomic or molecular species, A and
‘B, and ask how they interact.-No chemical reaction is implied, and I should say
straightaway that I am not going to-be concerned with bond making and bond break-
ing in this chapter. That is the subject of valence theory. In the (unusual) case that the
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Oiten Spﬁa.k a.bout the pal) poleizl!al d write t b - Whele R 18 the SE[)aIalZIOl]
an 1

betw cEn t.he tWO atOH'lS. Ihe Zero Ot ()(j?}, denotcd by the llOllZOntal 11113, 18 com-
mﬁn]ty- ChaIaCfeI‘lZe the curve

II]OHI& taken to IEfBI to the tWO atOIﬂS at V‘Ve OfteIl 313

terms of a sm
ail number of parameters; for example, the collision diameter ¢ being:

the distan i ini
ce at which U(R) =0, the minimum Ry, and minus the vajye of U(R) at .

Runin (Often written €, and as defined is a positive quantity)

Wi eed to | i :
€ now ny to investigate more closely the precise form of this pair potential, -
e €1 -

The potenti i i i
potential comprises 3 repulsive part (important for smalj R) and an attractive part

Diatom potentiat

Bﬁeratom distance

Figure 3.1 . Schematic Ar—Ar Interaction
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{important for large R). It turns out that there are three major contributions to the
attractive part, as we will see below.

3.2 The Multipole Expansion

Suppose that we have two molecules with centres a distance R apart (Figure 3.2). The
distance R i3 taken to be large compared with a molecular dimension. Fach molecule
consists of a number of charged particles, and in. principle we can write down an
expression for the mutuzal potential energy of these two molecules in terms of the pair
potentials between the various point charges. The basic physical idea of the multipole
expansion 18 to make use of the fact that several of these particles go to form
molecule A, and the remainder to form molecule B, each of which has a distinct
chemical identity. We therefore seek to write the mutual potential energy of A and
B in terms of the properties of the two molecular charge distributions and their

separation.

3.3 The Charge—Dipole Interaction

1 can illustrate the ideas by considering an elementary textbook problem, namely the
mutual potential energy of a simple small electric dipole and a point charge. Suppose
that we have a simple dipole consisting of a pair of charges, 04 and (g, aligned
along the horizontal axis and equally separated from the coordinate origin by distance
d. We introdoce a third charge @ as shown in Figure 3.3, with the scalar distance R

Molecule A

Molecule B

Figure 3.2 Twe interacting molecules
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-Figure 3.3 Charge-dipoje interacrion
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drey 2d (32}

but we are going 1o inyegy;
systerm as we change (e
Temains constant,

The mutval potentiaf enersy Uch .
arge— -
dipole i given exactly by By icharge dipole) of the pomt charge and the electric

gafe- what happens to the mutual potential energy of the;
position vector of (J, and so we ignore this term since it

U(Chargeﬂdipolc}' == Zl— Q (% + QB)

TE 1{'A }“{g (3-3}

This can also be Written i terms of g and 8 as

U(charge - dipole) = _1 _ 0 ( . Oa Os )

W ey e -
dmey 1z’(R?'-i-cz’z-i-2d1‘?ccost9)-’-\/(}?3-}—‘42—ZdRcosﬂ)
(34

and once again, this is ap gyae expression,

In the case where the Point charee .
ets .
nate origin, We can usefylly exp e O gets progressively for away from the coordi-

and the two denom; i ; :
to give: TIINALOLS using the binomial theorem

i 1 -
U{charge-dipole) - i Q( (QA;‘ Os) " {Os Rng)d cosd

TEY

- Op)d?
+LQ~A;{_.,_—?E)_*(3¢0329-1)+---) (3.5)

gle & with the electric dipole, ag
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The first term on the right-hand side contains the sum of the two charges making up
the dipole. Very often, we deal with simple dipoles that carry no overall charge, and
this term is zero because 04 = — Qg. The second term on the right-hand side ob-
viously involves the electric dipole moment, whose magnitude is {Og — 04)d. The
third term involves the electric second moment whose magnitude is (@ + 0,4 and
s0 on. The mutual potential energy is therefore seen to be a sum of terms; each is a
product of a moment of the electric charge, and a function of the inverse distance.
Hopefully, as R increases, the magnitude of the successive terms will become less and
eventually the mutual potential energy will be dominated by the first few terms in the
expansion. :

In the more general case where we replace Q4 and Qg with an arbitrary array of

- point charges Oy, Os, ..., (0, whose position vectors are R, Ra,..., R, (or for that
. matter a continuous charge distribution), it turns out that we can always write the

mumal interaction potential with Q as

= ¢ - . _].'._ ; R: | o -E- 1
U= s { (; Q,) R (Z Q,R,) grad (R) + higher order terms} .(3-6)

i=1

The first summation on the right-hand side gives the overall charge of the charge
distribution. The second term involves the electric dipole moment; the third term
involves the electric quadrupole moment and so on.

3.4 The Dipole—Dipole lnterqction

Consider nbw a slightly more realistic model for the interaction of two simple (di-
atomic) molecules, Figure 3.4. Molecule A con_sists of two point charges, 0, and

Qia

Figure 3.4 Multipole expansion for a pair of diatomics
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(24, and molecule B consists of two poi_nt charges, Ohp and Oyp. The overall char-ge.: :
on molecule A is therefore Q4 = Q14 + Q34 with a similar expression for molecule

B. The electric dipole moments of A and B are written ps and pg in an obvious

notation; and their scalar magnitudes are}wﬁ]__:;en Pa and pg. The second moments of -
the two molecules are each determined by a scalar value ¢, and gy, simply becanse

they are iinear.

Molecule A is centred at the origin, whilst molecule B has its centre a distance R -
away along the horizontal axis. The inclinét_i’@ﬁéﬁ-’tq-the axis are 6, and 0. and ¢ gives -
the relative orentation of the two molecuies. The sizes of the two molecules aye-
much less than their separation, so we -c'z'a_n--.'rﬁ_aké'_.thc same approximations as for the.
small dipole. After some standard ana.ly:;isg-wé find that the mutual potential energy of _' :

Aand B is

1 =
{(4meg)Usp = g%QB + I (QBpA.cps 84 — Qapp cos fg)
Paps
-

1 - ‘
+ 555 (Qage(3cos8y — 1) + Opga(3cos 20, — 1))

{2 cos 8400385 — sinf, sin g cos )

‘e — 67

The physical interpretation is as follows. Theﬁrst term on the right-hand side gives .
the mutual potential energy of the two charged moge_cules A and B. The second term .
gives a contribution due to each charged n:;Ql__ec_:ﬁ,ip with the other dipole. The third -

term is a dipole—dipole contribution and s6.0m.

i A and B correspond to uncharged molécules; then the leading term is seen to be e

the dipole--dipole interaction

(47€0) U ip-aip = J% (2 cos 85 cos B — sin G sin f cos ) (3.8)

The sign and magnitude of this term depends critically on the relative orientation

of the two molecules, Table 3.1 shows three possible examples, all of which have- .

é=0.

Table 3.1 Representative dipole_—t_:!ipoit_a lerms for two diatomics
Oa_ 6 Relative orientations  Expression for dipole—dipole U/

0 0 Parallel L —2p,pp [Aneg R
0 T Antiparallel . Hlpap/dneR®

0 T/2  Perpendicular R 0
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3.5 Taking Account of the Tempera_ture

We now imagine that the two molecules undergo thermal metion; we keep their -
separation R constant but allow the angles to vary. The aim is to calculate the average
dipole--dipole interaction. Some orientations of the two dipoles will be more ener-
getically favoured than others and we atlow for this by including a Boltzmann factor
exp( — U/kgT), where kg is the Boltzmann constant and 7 the thermodynamic tem-
perature. It is conventional to-denote mean values by ‘carets’ (- +-} and the mean value
of the dipole—dipole interaction is given formally by

Vo) _ J Usp exp(—Lp)ar
AB ) dip—dip = J cxp(—%:%)dT

(3.9)

The integral has to be done over all possible values of the angles, keeping R fixed.
After some standard integration, we find

o381
Uspho g = ——= B~ 3.10)
( AB)dlp_de 3[(]3 T(47T60)2 RS (
The overall value is therefore negative, and the term is inversely dependent on the
temperature, It also falls off as 1/R®.

3.6 The Induction Energy

The next step is the case of two interacting molecules, one of which has a permanent
dipole moment and one of which is polarizable but does not have a penmanent electric
dipole moment. '

Figure 3.5 shows molecule A with a permanent dipole moment p,. I have indicated
the direction of py in the diagram, and an arbitrary point P in molecule B. The dipole
P» is a distance R from point P, and makes an angle & as shown. The molecules are
sufficiently far apart for the precise location of the point P inside the second molecule
to be frrelevant.

The basjc physical idea is that the electric dipole p, induces a dipole in molecunle
B, since B is polarizable. We evalnate the potential energy involved and finally
average over all possible geometrical arrangements, for a fixed value of the inter-
molecular separation. The steps involved are as foliows. The ‘electrostatic potential
due to the small dipole p, is

PA-R

1
4mey R?

a(R) =
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Molecule A
Dipole p,

P

it - ~.

R

Molecule B
No permanent dipole
 polarizability cr

Figure 3.5 Dipole-induced dipole

This is related to the electrostatic field by the general formula
E(R) = ~grad 6(R)

and direct differentiation gives the following formula

' " piR L
EA(R) = _L{Pé_ 35LR} (3.11)"

Molecule A therefore generates an electrostatic field in the region of molecule B,
according to the above vector equatior. The modulus of this vector at point P is -

= IWP_A\/_*T’ -'
E v (I'+3COS &) (3.12)

This electrostatic field induces a dipole in molecule B. For the sake of argument, T

will assume that the induced dipole is in the direction of the applied field (and so we
need. not worry about the fact that the polarizability is a tensor property). Calculation
of the resulting mutual potential energy U,y gives

2]

Ung = = ———=—A (30050 + 1) (3.13).

Polarizabilities are positive quantities and so U,y is negative for all values of € at a
given intermolecular separation This is quite different to the dipole--dipole interac-
tion, where some alignments of the dipoles gave a positive contribution to the mutual
potential energy and some gave a negative one.

Finally, we have to -average over aJl possible alignments keeping the inter-
nuclear separation fixed. This averaging again has to be done using the Boltzmamn'
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weightings, and we find eventually an expression for the induction contribution to the
mutual potential energy of A and B

1 plos

ey (3.14)

(UAB>ind- =

Note that the interaction falls off as I /R® just as for the dipole—dipole interaction, but

-this time there is no temperature dependence. For two identical A molecules each

with permanent electric dipole p, and polarizability s the expression becomes

2 piaa
(4??60)2 RS

(Unnog = — (3.15)

This of course has to be added to the dipole—dipole expression of the previous section.

3.7 Dispersion Energy

It is an experimental fact that inert gases can be liquefied. Atoms don’t have perma-
nent electric moments, so the dipole—dipole and induction contributions to the mutual

_potential energy of an array of inert gas atoms must both be zero. There is clearly a

third interaction mechanisny {zeférred to as dispersion), and this was first identified by
Fritz W. London in 1930. o

The two contdbutions to the mutual potential energy discussed in previous sections
can be described by classical ielectromagnetism. There is no need to invoke the
«concepts of quantum mechanics. Dispersion interactions can only be correctly de-
scribed using the language of Guantum mechanics. Nevertheless, the following qual-
itative discussion is to be found in all elementary texts.

The electrons in an atom :'r_J"r" molecule are in continual motion, even in the
ground state. So, although -on average the dipole moment of a spherically-
symmetrical sysiem is zero, :i-at" any instant a temporary dipole moment can
occur. This temporary dipole can induce a further temporary dipole in a
neighbouring atom or molecule and, as in the case of the inductive interaction;
the net effect will be anractive.

Paul K. L. Drude gave a siihpie quantum mechanical description of the effect, and
his theory suggests that the dispersion contribution can be written

. Ds Dg Dy
(U gep = —(ﬁ+ﬁ+ﬁ+ - ) (3.16)

The first term (which I have written D) is to be identified with the instantaneous
dipole-induced dipole mechanisin. The higher terms are caused by instantaneous
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quadrupole-induced quadrupoles, etc. According to Drude’s theory

3&251

*T T d{dre)’

In this expréssion, =; is the first excitation: enérgy of the atomic or molecular species-’
concerned. The dispersion energy is again seen'to be attractive and to fall off as 1/ RS

3.8 Repulsive gpntribution-s_:.

When two molecular species approach so closely that their electron clouds overlap,' B
the positively charged nuclei become Jess well shielded by the negative electrons and

50 the two species repel each other. The repulsive term is sometimes written

Urep =AGXP{FBR) (3.18) '

where A and B are specific to the particular molecular pair and have to be determined '.

from experiment. The precise form of the repulsive term is not well understood: alk

that is certain is that it must fall off quickly: with distance, and the exponential <

function is therefore a possible suitable candidate. _
The total interaction is {7 = Urep + Ustip-aip + Ui + Ugisp, which we can write _

U=A exp(~'—B_R_j - % (3.19) _'

since all the attractive forces fall off as | /R. This is known as the exp-6 potential. In the

Lennard-Jones (L-J) 12—6 potential, we take arepulsive term proportional to 1/R* and so_: o
U =ﬁ_ﬁ (3.20)

Once again the coefficients C12 and Cg have to be.-determined from experiments on -
the species under study, The L-J potential usually is written in terms of the well depth

£ and the distance of closest approach o as follows

vor=e( () ) ) o)

The two L-J parameters o and « have been deduced for a range of atoms. The quantity -

e/kg (which has dimensions of temperature) is usually recorded in the literature . ._:

rather than e. Sample atomic parameters are shown in Table 3.2.

THE FORCES BETWEEN MOLECULES: |
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REPULSIVE CONTRIBLITIONS

Table 3.2 Representative L-] atomic parameters

&/k)/K o/pm
He 10.22 _ 238
Ne 35.7 279
Ar 124 . 342
Xe 229 406

Table 3.3 L-J parameters for simple molecules

{e/ks)/K o/pm
H, 333 297
0 113 343
rl
N, 91.5 . 368
357 412
Cly
Br. 520 427
2
cO 190 400
2
137 382
CH, %
CCl, 327 . 5
C,H, 205 : :g?
CeHs 440
11072 o
5.10722 4
3
&
£
g
| F : t : e 0’-10
g LT R IPWT =T ST T 81
~5.1072 4
Rim

Figure 3.6 Lennard-Jones 12~6 potential for argon—argon

Over the years, people have extended these ideas to the interaction of s@mple m(;itle-
cules. Some caution is needed: the interaction between two mo%eculfas will gener. 3;
depend on the precise details of their orjentation, and the valnes given in Table ;3 m;lf
be interpreted as some kind of geometrical average. These values were taken from the
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‘ Second, there are experiments that essentially relate to condensed phases, where the
i interacting particles are sufficiently close to raise doubts about the credibility of the
pairwise additivity assumption, '

classic text Molecular Theory of Gases and Liguids [1). Figure 3.6 shows a L-J 12-6
plot for argon—argon. | :

3.9 Combination Rules 3.10.1 Gas imperfections

The deviation of gases from perfect behaviour can be expressed in the form of a virial

A large number of L-J parameters have been deduced over the years, but they relate .
equation of state

to pairs of like atoms. Rather than iy to deduce corresponding parameters for unlike
pairs, it is usuval to use so-called combination rules, which enabie us 1o relate the Cpy
and the C4 parameters for an unlike-atom pair A-B to those of A-A and B-B. The
use of such combination rules is comunon in subjects such as chemical engineering,
and is widely applied to many physical properties.

There are three common combination rules in the literature, as follows

BV _ B0} wT) (3.25)
nRT Vv &
where the virial coefficients B(7), ({T),... depend on the temperature and on the
characteristics of the species under smdy. Here, n is the amount of substance, p the
pressure, V the volume, R the gas constant and T the thermodynamic tem_perat_m.*e.
B(T) is called the second virial coefficient whilst C(T) is called the Ihlrt.:l virial
coefficient and so on. They have to be determined experimentaily by ﬁmngl the

pVT data of the gas under study. . N _
The virial equation of state has a special significance in that the virial coefficients

can be related directly to the molecular properties. B(7) depends on the pair potential
U(R) in the following way

B(T) = ?;.rrfooo (1 —exp (— ZS,)))deR - (3.26)

3.10.2 Molecular beams

R* B* 12
Cy= (—2‘— + ?") VEE;

R RN\¢
Coy =2 2t ) VEE

where R} is the minimum energy separation for two atoms of type i and &; the well
depth;

(3.‘52) i

Cizyg = 4(0:0))° /555

3.23)
Cog = Havoy)’ ez (3.23)

and finally
0y In a molecular beam experiment, a beam of mono-energetic molecules is pr.oduceid z_md
Cou=C 7 3 ; allowed to collide either with other molecules in a scattering chamber, or with a similar
VR - 329 beam travelling at right angles to the original beam. Measurements of the amount by

Cag =3 Coy(Ri + R;) ’ which the incident beam is reduced in intensity, or the number ?f molecgles scatt_ered in
7 . a particular direction, allow determination of the parameters in the pair potential.
where a; s the dipole polarizability of atom i, N; the number of valence electrons and ‘

K; the van der Waals radius.

3.11 Improved Pair Potentials

3.10 Comparison with Experiment *

The L-J 12-6 potential for a pair of interacting atorns

You will have got the idea by now that we have to determine the parameters in any
pair potential by appeal to experiment. There are two kinds of experimnent (0 consider.
First, there are those that are essentially in the gas phase, where pairs of atoms
genuinely interact with each other unencumbered by other species. This means ;.
that the total mutual potential energy is given by the sum of the interacting pairs. -

Ciz Cs
Ur5(R) = s

-((5)"-(3))
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COntains two parameters (g and ¢, or €} and Cs,) that have to be detennjned by
experiruental observation. The €xp-6 mode] :

U(R) = A exp(=BR) — %

contains three pa}émeters, which allows for a little more fexibility.

The Bom—Mayer-Huggins potential D

¢ D Ga7)

U(R) =Aexp(~BR) - = -

R R Figere 3.7 Two dinitrogen molecules, arbitrarily oriented

contains four parameters. _
More recent investi gations have concentrated on pair potentials having many more -
disposable parameters, for example '

U(r) = exp (A(I ‘9) ng(g“ 1) |

Cs Gy Cro
o o & o

If I write as shorthand the L-J interaction between atoms A and C ag

U-s(A,C) = de ((}TZE) - (7\%) 6)

then the total interaction between the two diatomics is taken as
Uy = U (A, C) + Upy(a, D) + ULy(B,C) + U3(B,D) {3.29)

Such a potential is called a site—size potential. We will meet such potentials later in
the book.

3.12 Site—-Site Potentials

The L-J potentia] Plays an important role in the history of molecular modelling, Eaﬂy.'
work focused on atoms, but as I explained there Were many ambitious attempts to-
model simple molecules as if they were in some way L-T atoms, and the Parameters’
have to be interpreted as applying to some kind of average over molecular rotations -
{and presumably vibrations). - '
Suppose now that we wapt to try to understand the interaction between two dini- -

Figure 3.7 shows two such dinitrogens, oriented arbitrarily in space with respect to
each other. Nitrogen A and nitrogen B make up 2 stable diatom, as do atoms C and D,
We ignore the fact that the molecules have vibrational energy, and the two diatoms E



Balls on Springs

he theory of intermolecular:forces relates to atomic and/or molecular species that
¢ some distance apart (say, a few bond lengths). We saw in Chapter 3 that progress
an be made in such a theory: wnhout normally invoking the concepts of quanium
echanics. If we wuly watit i understa.nd why two atoms combine to give a chemical
bond, and how bonds get broken and feformed in chemical reactions, then we enter
“the realms of valence theary Quantum mechanics plays a domimnant part in such
discussions.

These are sm:lple—mded comments and my arbiirary division of molecular inter-
actions is subjective. At first sight; the stability of an NaCl ion pair can be explained
in terms of elementary electrostahcs and we can usefully model argon liguid without
recourse to quantum mechanics (apart from the London dispersion potential, which is
a ‘pure’ quantum mechanical’ effect) A C—C bond in ethane is at first sight a
‘quantum mechanical animal, and ‘we will certainly have to invoke quantum mechan-
ical ideas to explain the reaction of ethene with dichlorine. But there are grey areas
that I can bring to your attention by considering the phenomenon of hydrogen bond-
.ing. The hydrogen bond is an atiractive interaction between a proton donor X—H and
a proton acceptor Y in the ‘sanie’or a different molecule

X—H..-Y

. The bond usually is symbo]iié::d' by three dots, as shown above, in order to reconcile
the existence of compounds such as

‘NH; ---HCI

with the trivalence of nitrogen,-the divalence of oxygen in oxonium salts and other
compourkls that apparently _E}Sr_e'ak ‘the classical valence rules. Hydrogen bonds
typically have strenigths of 10-100kTmol ", The lone pairs of oxygen and nifrogen
and the partially charged character of the proton were eventually recognized as
the sources of this bond. The'ﬁfst reference to this ‘“weak bond’ were made by
W. M. Latimer and W, H. Rodebush in 1920 {21

The individual monomers X——H and Y retain their chemical 1dent1ty to a large
* extent on hydrogen bond formatlon In other words, no new covalent bond gets made.
A great deal of evidence suggests ‘that simple electrostatic models of the H bond give
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perfectly acceptable quantitative descriptions of the structure, vibrations ahd.elécf_ﬁc
dipole moments of such hydrogen-bonded species. The hydrogen-bonded species

R — R, and if F; is the restoring force due to the spring, then it is often observed
' experimentally that the force is directly proportional to the extension

Fo= k(R —R.) @)

The constant of proportionality % is called the force constant and it tells us the
strength of the spring. This law is known as Hooke’s Law and it applies to very many
springs made from many different materials. It invariably fails for large values of the
extension, but is good for small deviations from equilibrium.

Suppose that we now set the particle in motion, so that it oscillates about R..
According to Newton’s second law we have

is well known and has been well stﬁdiédf, but it cannot be written
F~H.-..F

becanse the proton is equally shared between the two fluorine atoms. Such.a sp_éc_ies.
is best thought of as covalently bound, and has to be treated by the me_tho_dé.of :
molecular quantum theory. S B
Having warned about bond breaking apd bond making, I should tell yol that a-
great deal of molecular modelling is concerned with the prediction and rationalization-
of molecular bond lengths and. bond angles. Here we usually deal with- isolated:
molecules in the gas phase and the: theoretical treatments often refer to. 0K. A
surprising amount of progress can be made by treating molecules as stractureless
balls (atoms) held together with spﬁng'sg(ponds).j The amray of balls and springs is t&_e:i;'
treated according to the laws of cla_ss_iéa_lj} _I_ii_céchanics. Such calculations are remark--
~ ably accurate, and are taken very seionsly. AR

2
m%{—f = k(R — R.) 42)

This second-order differential equation has the general solution

k, k, :
R =R+ Asin (1{—5{) + Bcos ( -—st) (4.3)
m m

where A and B are constants of integration. These constants have to be fixed by taking
account of the boundary conditions. For example, if the particle starts its motion at
time ¢ =0 from R =R, then we have :

k.
R.=R, - Asin (\/Es 0) + Bcos (\/——:0)
m m

from which we deduce that B = 0 for this particular case. Normally we have to find A
and B by a similar procedure. .

The trigonometric functions sine and cosine repeat every 2w and a little manipula-
tion shows that the general solution of Equation (4.3) can also be written

R =R, +Asn ('\/E(z + ZW@) + Bcos (\/k—:(t 4 ZTT\/E))
m ks Vm k

The quantity /k,/m has the dimension of inverse time and obviously it is an im-
portant quantity. We therefore give it a special symbol (w) and name (the angular
vibration frequency). We often write the general solution as

4.1 Vibrational Motion -

To get started, consider z particle of n_;ass_m. lying on a frictionless horizontal table,
and attached to the wall by a spring, as shown in Figure 4.1. The particle is initially at
rest, when the length of the spring is Rc.(_iyhe_re the subscript ‘e’ stands for é(jﬂilibi
rium). If we stretch the spring, it exerts a réston'ng force on the particle, whilst if we
compress the spring there is also a foree that acts to restore the particle- to its:
equilibrinm position. If R denotes the: length of the spring, then the extension is

O o

T

Wall

R = R, + Asin{wt) -+ Bcos (wi) (4.4)

A typical solution is shown as Figure 4.2 (for which I took 4 = 1 mB=0,m=1%kg
and k,= 1 N'm™). Such motions are calied simple harmonic. At any given time, the
displacement of the particle from #ts equilibriuin position may be non-zero, but it
should be clear from Figure 4.2 that the average value of the displacement R — R, is

Figure 4.1 Ball atiached to the wall by  spring
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4.2 The Force Law

0.5

“If we use the general one-dimensional result that links force and mutual potential
energy

V) = — / Flx)dx

we find

=l

Cw U(R) = U(R) + k(R — R 7 (4.6)
where U(R,) is the value of IXR) at the equilibrium position. As mentioned earlier,

Figure 4.2 Sim : .
ple harmonic motion : _
_we often set this constant of integration arbitrarily to zero and so

1
U(R) = k(R —R.)* - (4.7)
v Because the motion is simple harmonic, we refer to this potential as a harmonic
potential. The potential energy varies over each cycle, in the same way as shown
% 06 in Figure 4.3. The average value of the potential emergy over a cycle is
? B
S {UR) = d{(R - Re)")

i
=

=1(A*+8%)

0211
: Finally, the kinetic energy T is given by

=1 (%)

£ e

Figure 4.3 Varian I
Eig ation of (R — R,Y with time The average value is

zero. As noted in Cha L
write pler 3, it is usual to denote average vaiues by (- -) and so we (T(R)) = a‘-mwz(A2 + B?)
N — lew ks( AZ + BZ}
(B~ Re) =0 . . . o ,
It shoul : The kinetic and potential energies vary with time, but the total energy U(R) + T(R) is
should also be clear from F constant; it does not vary with time, The average value of the kinetic energy over a

€ 4.3 that the average value of (R — R.)? is not zero
wr)) =1 gives .

cyele is equal to the average value of the potential energy, each of which is one half of
the total energy. [ am going to use the symbol & for emergy when referTing to a single
atom or molecule, throughout the text. The total energy € can take any value with no

restrictions.

A direct calculation using {sin?(

(R—R.)%) =142+ B2 (4.5)
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We now define 2 quantity y called the reduced mass by

o (IITT @

Figure 4.4 Diatomic molecule

egmhbnum length of the spring is R, and the léngth of the
given time is

R=2x - x
The spring extension is therefore

n—x—R.

Consxde’nng atom 1, the spring exerts a force of kg(xs — x; —
Newton’s second law

dx1
i e ks(x2 —x; — R,)
- kS(R “Re)

As far as atom 2 is concerned, the extended

ksGrz —x; — R,) in the direction of decreasing x, and so
d2x2 )
mz‘“d’tT = —ke(x; — X —R.)

= ~k(R —R.)

After a little rearrangement we find

d"R_M K,
ar _E(RWR") T m (R~Re)
I i
= ‘ks(ﬁl--i*m*z)(R«—Rc)

m,

Spring exerts a force of magnil:ude"'.

1 1 1
—=
Boom Mz
and so we have
d’R
boF = k(R R (4.11)

which is identical to Equation (4.2) already derived for a single particle of mass u on
a spring. The general solution is therefore '

k,
R = R. -+ Asin (\ﬁr) + Bcos (\/;t) (4.12)
an arbitrary axis, the # ’ H
extended spring at some
and the angular frequency is
L
W= 1]
e
It is easy to demonstrate that the potential energy is
R.) and so, according to’ U=1thklo—x - R.)?
and the total energy .y, of the harmonically vibrating diatomic is therefore
1 fda)\® 1 fdn\? | 2
(48) : Evib &Eml (117) +-2—m2 (E +§ks(x2 — X1 —Re) ) {4.13)

4.4 Three Problems

49)
(4.9) This simple treatment suggests three problems. First, how do we determine the spring

constant for a simple molecule such as 'H*>Cl or '2C**0? Second, how good is the
harmonic approximation? And third, have we missed anything by trying to treat a
molecular species as if it obeyed the laws of classical mechanics rather than quantum
mechanics? :

The three questions are interlinked, but let me start with the third one. The experi-
mental evidence suggests that we have made a serious eror in neglecting the quantum

(4.10)
mechanical details. If we imradiate a gaseous sample of "H>>Cl with infrared radiation, it




L _
the vibrational energy cannot take arbitrary values, it is quantized,

2. there is a single quantum nu
vibrational quantum number; and

3. vibrational energies ey, are given by

o fer 1
Evib = =4 [ [ v 4.2
® = \/;(” + 2)

where % is Planck’s constant. ‘

The i 5
results are usnally summarized On an energy level diagram, such ag Figure 4.5

.

E —_— v=3

z

& — y=2
—_— =]
" v=0

Figure 4.5 ﬁbmdoud energy levels

I'have just drawn the first four vibrational energy levels

" . .
of them. According to the harmonic model, the spacing between the levels is constant

mber v, which takes values 0, 1,2, .. .. calieq :&le

but there are an infinite number :

THREE PROBLEMS , >

o v=1. Molecules with v=1 can either absorb radiation with exactly the
right energy for promotion to v=2 or they can emit radiation and fall to v =0 and
S0 on. _

According to the quantum model, then, molecules can only have certain vibrational
energies and this behaviour is totally at variance with the classical reatment. Also,
the quantum treatment differs from the classical treatment in that the lowest energy is

. that with v =0, where the energy is non-zero. This is called the zero-point energy.

According to the classical treatment, a molecule can be completely at rest. According
to the quantum treatment, the lowest vibrational energy allowed is the zero-point
energy. .

How do we measure the spring constant? According. to the harmomnic quantum
model, the energy difference between any consecutive pair of energy levels is given
by

h kg
Ag = 4 f—
£ 2\

so all we need to do is measure this energy difference experimentally. The reduced
mass p of the *H3°Cl isotopic species is 1.6267 x 10™*" kg and substitution of the
experimental value (2886 cm™ ') into the energy difference gives the harmonic force
constant as 480.7Nm~*. '

In fact, there is more to the experiment than I have told you. Spectroscopic experi-
ments are done at finite temperatures and a given sample of N molecules may have
many energy levels populated. Relative populations N, are given by the Boltzmann
formula

N, x exp (— k?T)

Substitution of values into the formula shows that for many everyday diatormic mo-
lecules at everyday temperatures, the only vibrational level populated is that with
y={. So an infrared absorption spectrum should just show a single absorption,
corresponding to the transition v =0 to v=1.

A closer examination of the “H*>Cl spectram shows weak absorptions at 5668,
8347,...cm™!, which are nearly (but not exactly) two and three times the
fundamental vibration frequency. The existence of these lines in the spectrum
shows that our assumption of Hooke’s Law is not completely correct. Figure 4.6
shows the ‘experimental’ ecnergy level diagram compared with the harmonic
one.

Our conclusion from the experimental data is that vibrational energy levels get
progressively closer together as the quantum number increases. This suggests that
whilst the harmonic model is a reasonable one, we need to look more carefully at the
form of the potential in order to get better agreement with experiment.
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ee——— =4
B v —
5 =z
e w=l ———
v.ﬂﬂ
Harmonic Experimental
Figure 4.6

- Harmondc vs. experimental energy levels

4.5 The Morse Potential

Professional spectroscopists would be unhappy-with the idea of using Hooke’s Law
as a model for the vibrational motion. They would be more concerned with matching.
their experimental energy levels

to a more accurate potential. Many such potentials
have been used over the years, with that.due to Morse being widely quoted: in-
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Figure 4.7 Simple harmonic and Morse curves for HC1

elementary chemistry texts. The Morse potential is as follows

U == D (1 — EXp(;fJ‘(R - R.)))*

4.6 More Advanced Potentials

(4._14)_

where D, is the depth of the potential well, i.e. the thermodynamic dissociatipn_'._

energy, and
d2
5= /i) Re
2D;.
e - D,
=3 /D, (4.15)_ :

This potential contains three parameters, D,; w, and

giving a better representation to the potential energy

which contains just the two parameters, k and R,.
In the case of 'H*C1, a simple calculation shows that the dissociation energy

Re, and 50 should be capable of -
curve than the simple harmonic, " .

D, =Dy + %h(z_'zrwe)

is 4.4304-0.186eV =4.616eV. The Morse potential for
Figure 4.7 compared with the simple harmonic model. The
harmonie potential, the dashed curve the Morse potential.

'H*Cl is shown in |
full curve is the simple -

. . . i
More often than not the following spectroscopic constants are available for a diatorni
molecule:

the equilibrium internuclear séparation

the dissociation energy

the force constant

the anharmonicity constant (sometimes written x. only)

the vibration-rotation coupling constant

Usually these five constants can be found to good ex?enmem':al a(;cmt‘}ac;:.md i

There are a number of three- to five-parameter potential functions L(?r ott o [IJn rein
the literature, of which the Morse potential is the most popular. Jack Linne uihe
careful study of many such functions, for example the four-parameter po

U(R) = R% —~ bexp(—nR)_
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The four parameters ¢, m, b and n in this reciprocal
duced by fitting Spectroscopic data. At this point T sho
force constant from such g complicated expression, :
expansion of the potential about the equilibrium bond length

U(R) :U(Re)-‘r-(R——-Re)-(%) +§(R—Re)2(9ig)m +;-- @.16) _‘

- dR?

¢

UR) is obviocusly equal to U{R,) when R=R
tion. The equation is sometimes written as

UR) ~ U(R,) = (R - R,) (j—g) + R - R.)? (g_;g)m .

Lo

Or even

U(R) = (R - R,) (Z—Rq) +3R -R.)? (%’)M +oe

R=R,

where it is understood that U(R} is measured relative to the
mum (that is to say, we take the zero as U(R.)).

The quantity dU//dR is of course the
at the minimum where R = R, is called the

potential energy mini-

evaluate the force constant. In the 5p
derivative is a constant and is equal to the force constant,

~eXponential function are de-
uld explain how we recover the s
and to do this I'll use a Taylor

e, and this fixes the constant of integra-

gradient of U. The second derivative evaluated .

(harmonic) force constant. To find R, we
solve the equation i/ /dR =0 and substitute this value into the second derivative to -

ecial case of a harmonic potential, the second -

5 Molecular Mechanics

In Chapter 4 1 showed you how to use classical mechanics to mode} the ‘;ﬂz;-l-
tional motion of a diatomic molecule. T also explained the s_hortcommgs old bs
.treatment, and hinted at applications where a quantum mecharuc?l model IWH 1 E:;
more appropriate. We will deal specifically with quantum mechanical models in la
chapters.

5.1 More About -Ba:lls:fon Springs

It is time 10 move on to more ﬁoni_plicaied molecule_s, and I wan.t to .start 1:15161 discos-

sion by considering the arrasigement of balls on springs shtowrlrt1 in aﬁfgre pI-i;;g .
ings cach satisfy Hooke’s Law. I will call the s -

We assume that the springs each satisfy ; |

stant of the left-hand spring &y and the spring constant of the 1*1ght—hf:mdc:;:f;):;;lgl2 ky. ;I;nhz

ilibri iti o s having x coor le
equilibrium position corresponds to the two masse - and
Rci and we constrain the motion $o that the springs can only move along the x-axis
,e’ 0 .
The particle masses are shown-in Figure 5.1.

Fignre 5.1 ‘Two balls, two springs

We then stretch the system, so- extending the two springs, a-nd I ;vgie callﬂnthz
instantaneous pbsitions of the twd masses, x; and x,. The extensions o spring
from their equilibrium positions are

LH=x _—- Ry and £ =x;—Ra,
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Consider the left-hand spring: it exerts a restoring force on particle 1 of — k€1, Now -
Fons;der the right-hand spring. This spring:is stretched by an amount (& ~ £;), and so
1t exerts a force of ko(&; — &,); this force acts to the left on particle 2 and to the nght o

In order to Investigate these normal modes of vibration, T write the above eguations
in matrix form, and then find the eigenvalues and eigenvectors as follows

on particle 1. Application of Newton’s second law gives (ithk) k-
TTom w8 o2 (& (5.3)
k(&2 ~ &t} — &y = m 3 o ) N
d tz . . mz mz
k d’, @)
—kols — &) =y e ' Matrix diagonalization gives the allowed values of o” (the eigenvalues), and for each

value of —” we calculate the relevant combinations of the £s (the eigenvectors). The

There are many different solutions to-these: simultaneous differential equations, but eigenvectors of the matrix are called the normal coordinates.

1t_ proves possible to find two particulatly. simple ones called normal modes. of
vzbrf.ztzon. These have the property that: both particles execute simple harmonic
mogon at the same angular frequency. Not' only that, every possible vibrational
motion of the two particles can be described as linear combinations of the nonﬁal
modes. -
‘Having said that it proves possible to.find such solutions where both particlés :
v1brate with the same angular frequency. <. let me assume that there exist such
solutions to the equations of motion such that o

5.2 Larger Systems of Balls on Springs

For a molecule comprising N atoms, there are 3N Cartesian coordinates. Of these,
three can be associated with the position of the centre of mass of the whole molecule
and three for the orientation of the molecule at the ceatre of mass (two for linear
molecules). This leaves 3N — 6 vibrational degrees of freedom (3N — 5 if the mole-
cule is linear), and it is appropriate to generalize some concepts at this point. 1 am
going t0 use matrix notation in order to make the equations Iook friendlier.

The molecular potential- epergy U will depend on p=3N—6 (independent)
variables. For the minute, let me call them ¢y, 43, .. .qp. and let me also write
10> G2 - - - 1 qp.e TOI their ‘equilibrium’ values. These coordinates are often referred
to as internal coordinates, and they will be linear combinations of the Cartesian
coordinates.

§i(r) = Asin{wr + ¢1)
&{(t) =B sin (wr + ¢7)

conditions. o
Differentiating these two equations with respect to time gives

where A, B, ¢y and ¢ are constants that héve' 0 be determined from the boundary'

d2§1 {n = oA ;in (wt+ ) First of all, for the sake of neatness, I will collect all the gs into a column matrix q.
dz?‘z(z) : I will fdso t':ollcct together the ‘equilibrium’ values into a column matrix q, and the
—dwfz_ = —u”Bsin (we 4 ¢2) extensions into a column §
g1 die q1 — GLe
and subsiituting these expressions into the equations of motion gives el I E Sl Bl T Sl e (54)
qp gpe , dp — dpe

itk), &
B 7 & +ﬂ'z—1£2 = —w’¢y I will now write U(q) to indicate the dependence of U on these variables. If 1 use

b . f i (5.2) Taylor’s Theorem to expand L{q) about the point g, then the one-dimensional equation
P 1 — &= —wi; ‘ du EU

) | UR) - UR:) = (R R.) (a,r) HR-RP ()
These two equations are simultaneously valid: only when w has one of two possible - o
values called the normal mode angular frequencies. Tn either case, both partides :

oscillate with the same angular frequency: (given previously in Chapter 4) has to be modified to take account of the larger

number of variables. First derivatives become partial first derivatives, and we have to
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take account of the ‘mixed’ second-order derivatives -

L
U@ -Ug)=3¢g (-gg) + %)i“ f&@- (ﬁl
=0 i

i=1

The superscript T, as in £, indicates the transpose of a mairix; the transpose of a column
matrix is a row matrix. The hessian is often referred to as the force constant matrix.

Finally, if I denote the 3N Cartesian coordinates X 1- X2, - . . . X3n, We usually write
the transformation from Cartesian coordinates to internal coordinates as

q =BX (5.9)

T (5.5)
- . . . .
Iﬂ OIdH].aIy VECtor dlfhﬂ en[latlon, We meet the gladlent Of a SCa].aI field I deﬁned mn

where the rectangular matrix B is cailed the Wilson B matrix. The B matrix has 14
~ fows and 3N columns.

where e,, ¢, and e, are Cartesian upit Vectors.

“allables 1t pIOVE:S uSCful to ]Hake a gener ah atio alld Write =] adient o E()
.

5.3 Force Fields

au T have been vague so far about which variables are the ‘correct’ ones to take. Chem-
% o ists visualize molecules in terms of bond lengths, bond angles and dihedral angles,
o s yet this information is also contained in the set of Cartesian coordinates for the
grad U/ = a—q; s 6) constituent atoms. Both are therefore ‘comrect’; it is largely a matter of personal
o I choice and professional training. I should mention that there are only 3N — 6 vibra-
au tional coordinates, and 50 we have to treat the 3N Cartesian coordinates with a little
Eg; care; they contain three translational and three rotational degrees of freedom. 1 will

return to this technical point Iater.

Speciroscopists usually are interested in finding a set of equilibrinm geometric param-
eters and force constants that give an exact fit with their experimental data. This is harder
than it sounds, because for a molecule comprising NV atoms and hence p=3N-6
vibrational degrees of freedom, there are 1p(p — 1) force constants (diagonal and off-
diagonal). In order to measure the individoal force constants, the spectroscopist usually
has to make experimental measurements on all possible isotopically labelled species. It
turns out that there are many more unknowns than pieces of experimental information.
- Spectroscopists usually want a force field (comprising force constants, equilibrium
quantities and every other included parameter) that is specific for a given molecule.
They want to match up ‘theory’ with their incredibly accurate measurements.

Many of the ‘off-diagonal’ force constants turn out to be small, and speciroscopists
have developed systematic simplifications o the force fields in order to make as many
as possible of the small terms vanish. If the force field contains only ‘chemical’ terms
such as bond lengths, bond angles and dihedral angles, then it is referred to as a
valence force field (VFF). There are other types of force field in the Iterature, jnter-
mediate between the VFF and the general force field discussed above.

The second derivarives can be ¢
the hessian of U and I will gi
have

FU - Pu gy
8qi  0918q: Bgidgs
H=| U  &®uv &y :
Bg20q, 353_ 3_423_9’3 : (57) :
U U PU
0g30g,  Bqs0g, o

The Taylor expansion then becomes

Ula) - Ulg,) = g+ i™HE 4 ... (5.8)

Both t_he gradient and the hessian have to
sometmes see the equation written with

be evaluated at the point g, and so you will 5.4 Molecular Mechanics

an ‘e’ subseript

Molecular modellers usually have a guite different objective; they want a force field that

Ula) - Ulq,) =g, +LeTHe 4. .
) 2 : can be transferred from molecule to molecule, in order to predict (for example) the




 retained. These authors found that off-diagonal terms are usually largest when neigh-
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geometry of a new molecule by using data derived from other related molecules. '['hey.:i Other scientists recommend the Morse potential
make use of the bond concept, and appeal to traditional chemists’ ideas that a molecyle _
comprises a sum of borded atoms; a large molecule consists of the same features we.
know about in small molecules, but combined in different ways. i
The term molecular mechanics was coined in the 1970s to describe the application of "
classical mechanics todeterminations of molecular equilibrium structures. The method.
was previcusly known by at least two different names, the Westheimer method and thc._-_"
Jorce-field method. The name and acronym, MM, are now firmly established quantities.: .
The idea of treating molecules as balls Jjoined by springs can be traced back to the
1930 work of D. H. Andrews [4]. A key study to the development of MM was that by
R. G. Snyder and J. H. Schachtschneider i3] who showed that transferable force
constants could be obtained for alkanes provided that a few off-diagonal terms were -

Ung = D{1 — exp{—a(Ruzn ““RAB,E))}Z

whilst some recommend the addition of extra terms to the simple Harmonic expression

Ung = ki{Rap = Reas)? + k2(Rap — Resr)* (5.11)

5.4.2 Bond-bending

Next we have to consider the bond-bending vibrations. It is usual to write these as
harmonic ones, typically for the connected atoms A—B—C
bouring atoms are involved, and so we have to take account of non-bonded interac- '
tions, but only berween next-nearest neighbours. S
A final point for consideration is that we must also take account of the chemical - -
environraent of a given atom. An 5p carbon atom is different from an sp” carbon atom ‘-
and so on. It is traditional to speak of arom types in molecular mechanics. '
Qur idea is to treat the force field as a set of constants that have to be fixed by
appeal to experiment or more rigorous calculation. In molecular mechanics we take
account of non-bonded interactions. and also the chemical sense of each atoms, A
valence force field that contains non-bonded: interactions is often referred to as a*
Urey—Bradley force field. ' "

Uapc = Lkapc(fasc = feanc)” (5.12)

k is the force constant, and the subscript ‘e’ refers to the equilibrium value where the
molecule is at rest. A varjation on the theme is given by

e (cosfapc — cosfapce)’ {(5.13)

Unee = 5 20,00

5.4.3 Dihedral motions
Next we must consider the dihedral angle ABCD between the four bonded atoms

A, B, C and D (see Figure 5.3). Some aunthors divide these into proper d_ihedrals,
wilere we might expect full rotation about the connecting bond B—C, and improper

ABCD @ -
c

D

5.4.1 Bond-stretching

If we consider phenylanine (see Figure 5.2) we can identify a variety of bond types-'

Figure 5.2 Phenylanine

including C(spz)—C(spz), _C(spz}—C(sps), O—H, C==0 and so on. If we assume that
Hooke’s Law is adequate, then each bond stretch between atom types A and B makes
a -contribution to the total molecular potential energy of

Unp = 7ka(Rag — Rean)’ (5.10)

in an obvious notation. Here kag is the force constant, Rap the instantaneous bond

length and R, 45 the equilibium bond length. Fignre 5.3 Dihedral angle
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potential either in terms of the angle indicated (¢} of in terms of the height (A) of

dllledials WheIB t]lc I‘OlaUOIl 15 h ted or € p]e ]E (:“—D WEre a C—]I f_[a ent { F exaillples fouo“ -
mi| . I Xan d OUT
] A B
gm ! ] Cf atoms an
atorm D abo € E

C[Il yl gr()llp, ﬂlen WeE WU be expec Ut B—(: aﬂd a ﬂ]lee-f()]d
Ot a1m ld XP t full I'OtatIOIl abO .
Sylmnetl y n the pOtCIltIal eﬂel'gy tel'm. A“"—CH""CH"‘"— hllkage m a bcnzene '

“would only show a moderate flexi :
exing from its
_If We use x to denote the ABGD wou] Iﬁlanar value (a.nglt? Zero). . U == Wk* (cosy — cos )2
given by T gie. then a popular dihedral potential is - 2sin e, )
, _ Ui (5.16)

I == k(1 + ky cos (ne))

U :
3 (1= cosin(x —x.))) (5.14) -
e where # is a periodicity parameter, and finally

Here 7 is the periodici . ' P
ty parameter, which . .
would be 3 for a methy] group. y, is the U =ks5(1+ cos(ny — ke})

g'i' - A E=
ethbllmn tOISIOHal angie. more CO!Ilpllcated exal'ﬂpIe 18 given b have 10 l)e ﬁx.ed agaUIS[ c [
y 1S
The kS are constants l‘.ha[

Uz]_VVl(I+Cos(nlx_g1))+-‘é(l+cgs" V3 . rinm value
A _ : N, Wy — g2)) +E(1 +cos {mx — g3))° .

The Vs are energy terms, th .
' : - the 718 are periodicity paramet : . o
eteéz and Ny is a constant that depends on tht'e:y nﬁmber oﬁfrsgotlilldesgs e phase param- 5.4.5 Non-bonded interactions
. me au_thors treat improper dihedrals in the same way as bUIl.d-bendi g
contribution to the molecular potential energy ag nding, and take

I mentioned earlier that moieculérgmechanics force fields have to be transferable from
molecule to molecule, and é}({il{ﬁ;ﬁéd‘iﬁé necessity for non-bonded interactions. These
are usually taken to be Lennard-Jones 12—6 type, and they are included between ail

U ABCD = 1 k - 2
2%apcp(XaBep ~ XeaBcD) (5.15) non-bonded pairs of atoms.

C Gy

where x is the dihedral angle, as above, u
Uy = RZ RS

The Born—Mayer—Huggins potential
5.4. wof- .y ye : e

4.4 Qut-of-plane angle potential (inversion) BT

Upv =Aexp(—BR) ——¢ — —

RS R

Next w i

Fie ;40(:113;:(31* the oE.lt-of—plane potential terms. Imagine molecule ABCD in

Changes';fm 0 be ammonia, a FnolecuIe with a very low barrier to inversion: as
M positive 1o negative, the molecule inverts. We can write the inv,ersion

is sometimes used when dealing with polar species. B is a parameter determined
by the size and ‘softness’ of am ion, Cy (not the same as Cg in Upy) has to do
with dipole—dipole interactions -whilst Cs is determined by dipole—quadrupole
interactions. el

Some force fields make -s_j;a’e_ci'ai .-iarovision for hydrogen-bonded atoms; they treat
them as non-bonded interactions but soften the Lennard-Jones 12-6 potential for

A—H-.-Btoa 12-10 version

Cp  Cio
U = —2 — 5.17
RZL RE G17)

Other authors take the view_-that“}iydmgea bonds are perfectly respectable chemical
bonds that should be treated jt_i‘st_ tike any other bond. They are therefore given a force

constant and so on.

Figure 5.4 Out-of-plane (inversion) potential
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5.4.6 Coufomb interactions 5.6.2 Cut-offs

For a large molecule, there are many more non-bonded interactions than bonded inter-
actions. Molecular mechanics force fields very often cut these off to zero at some finite
distance, in order to save computer time. This can sometimes lead to mathematical
difficulties because of the discontinuity, and various ingenious methods have been pro-
posed to circumvent the problem (other than actually retaining the terms). I will show
you in a later chapier that there are other problems associated with this cut-off procedure;
it’s a real problem, not just one that I have mentioned out of historical interest. Figure 5.5

Many force fields take account of elecfronegaﬁvity differences between atoms. and:
add electrostatic terms. Atomic charges: Oy and Qg are assigned to atoms A and B
according to the rules of the particular _force field, and we write :

I' 0a0s

471'50 Run

5.5 Modelling the Solvent

{ should remind you that the electrostatic expression above relates only to point
charges in free space. In the presence of a diclectric material (such as water), the .
force between point charges is reduced by a factor ¢, called the relative permittivity.
Many force fields were developed at a time when it was not feasible to include &
solvent explicitly in such calculations. :

Vatious atternpts were made to allow for the effect of a solvent; the most obkus.-
thing to do is to alter the relative permiftivity-even though no solvent molecules are
actually taken into account. There is no. agreement between authors as to the correct
value of ¢; and values ranging between 1 and 80 have been used for water. Some force -
fields take ¢, proportional to the distance between the point charges. I will explam-
some more up-to-date ways of modelling the solvent in later chapters.

Lennard-Jones 12-6 potential, UL

Intermolecular distance, Rim

5.6 Time-and-Money—.Saving:_Tribks

- . . ) o Figure 5.5 Schematic cut-off of L-J potential
All the contributions to the molecular potential energy {/ given above can be done on F

a pocket calculator. The larger the molecilar system, the larger the number of in- -
dividual contributions to U and the relauonsh:p between molecular size and compu-
tational effort is roughly dependent on the square of the number of atoms. Over the -
years, people have tried to reduce the computational time for a given problem by the
use of various tricks of the trade. Two such methods are as follows.

shows a Lenpard-Jones 12--6 potential with a cut-off (after a certain value of R, the .
potential is set to zero).

5.7 Modern Force Fields

A “standard’ modern molecular mechanics force field can be written

U= ZUAB+ZUABc+ZUABCD+ Z Usncp

5.6.1 United atoms

Some professional force fields use the so-called united atom approach. Here, we regard

(for example) a CH; group as a pseudo-atom, X, and develop parameters for a C(sp?)— setch bend dihedral Qui-of-plane
X stretch, and so on. It is customary to freat methyl, methylene and methanc groups as + Z Unp + Z Uag ' (5.18)
united atoms, especially when dealing with large biological systems. non-bonded Coulamb
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or written explicitly in terms of the contributions discussed above. ‘or example, one well-known force field distinguishes five types of oxygen atom:

. a carbonyl oxygen
U= Yap(Ras ~ Ronn)” + > Ykasc(Basc — fonnc)

bonds bends . - . a hydroxyl oxygen
) Yo v k e or _
+ 0y TO(IM cos{n{x — xo))) + z P (cos® — cos %)2_ e . a carboxylic or phosphate oxygen
dihedrals om-of plane = ST e

. an ester or ether oxygen

+

12 o
non-honded (RAB RAB dmeg

. an oxygen in water.

% . CgB) n 1 Z Oa0g (5 19)
charges RAB .
The interactions are calculated according to atom type, not the ‘raw’ elernents.

5.7.1 Variations on a theme

There are a number of variants of this expression in the literature. Some force fields 5.8 Some Commercial Force Fields

contain mixed terms such ag

k : With these principles in mind, it is time to examine some of_ the common force fieids
'2-(R —R.)(6 — 8.} found in professional molecular modelling programs.

which couple together the bond-stretching modes with angle bending. Others use-
more complicated expressions for the individual bending and stretching terms:
Some force fields allow interactions between lone pairs, which are often referred
to as non-atomic interaction centres. In addition, there are specialist force fields tha
are appropriate for restricted ranges of compounds such as ions, liquid metals ‘and"
salts. : ol
Force fields are determined by one of two routes. First, in an ideal world, one mig‘ht'
calibrate their parameters against accurate quantum mechanical calculations'-on
clusters of small molecules. The alternative is to calibrate agalast experimental
data such as crystal structure, infrared absorption, X-ray measurements and liquid -

~5.8.1 DREIDING [6]

"This force field is parameterized-for all atom types that any chemist would expect _for
the elements H, C, N, O, P.'S, F/CL, Br and 1. In terms of the ‘standard’ expression

‘we write

: 2
U= Z %kAB (RAB - Re,AB-)Z. + z %kABC( cosBagc — cos QC,ABC)

bends
properties such as density, enthalpy of vaporization, Gibbs energies of solvation and o U : E- Y
the like. To date, almost all modern force fields have been obtained by the latier + Z =21 — cos (n(x — xo))) + Z 5(%5 — )"
approach. ' i dibezzas out-of-plane <
The choice of a particular force field for a given application should depend on the clz (b . 520
type of system for which the force field was designed. For example, some force fields': 4 Z (R% - RT“B) (5.20)
have been calibrated against the solution properties of amino acids, These are ob-- non-bended \AB  TAB

viously the ones to choose when it comes to modelling proteins in solution. e
Finally, I must emphasize the importance of the atom type (i.e. the chemical
environment). The chemical environment of an atom can be distinguished by '
5.8.2 MM1 [7]
. its hybridizati : '
1+ its bybridization In his 1976 Review, Norman Allinger essentially defined what we now call the MM 1
* force field. He treated hydrocarbons only, ignored the Coulomb terms and used an

exp-6 Lennard-Jones potential.: '.

2. its formal atomic charge

3. its nearest neighbours.
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MM?2 differs from MM in three main respects:
. The dihedral term was extended to

U=%(1 + cosw)+%(1+ cosZw)+—gE(l + cos 3w) (5.21)
where each of the Us was found by calibration against experiment.

. The bending term was extended to

R

Ungc = jkapc{Basc — Beapc)’ + 1kupc(fanc — Beanc)®  (522)
. All mention of cross terms between bond stretches and bends were finally dropped.
A great deal of importance was attached to the calculation of enthalpies of forma-

on, and 42 hydrocarbons were treated. The author claimed that his enthalpy results
ere comparable with experiment in terms of experimental error.

D B &

Figure 5.6 Bicyclic and related molecules
5.8.4 AMBER [9]

AMBER {an acronym for Assisted Model Building and Energy Refinement) is a force
field for the simulation of nucleic acids and proteins. It was calibrated against experi-
mental bond lengths and angles obtained from microwave, neutron diffraction and ac-
curate quantum chemical studies. The parameters were then refined with molecular
mechanics studies on model compounds such as tetrahydrofuran, deoxyadenosine, di-
methyl phosphate, 9-methyladenine-1-methylthymine hydrogen bonded complex and
others. The model differs from cur standard expression, Equation (5.19), in four ways.

Once all the standard cases have been successfully treated, one nawrally looks at.
the difficult ones. In the case of hydrocarbons, these difficult cases comprise strained
rings such as cyclobutane. The problem with cyclobutane is this; whilst having, all
carbon atoms planar can minimize the angular deformation from tetrahedral, the
molecule is actually puckered by a substantial angle from planarity. In addition;
the C—C bond lengths are unusually large. The obvious solution is to say that a:
-four-membered ting is different from any other hydrocarbon and that the bond angle'-
- does not have a natural tetrahedral value, but one then goes down the undesuable path :
where all difficult cases have their own set of parameters.

Allinger and others introduced a variety of ‘mixed’ temms into the stanclard_-
molecular mechanics potential; for example, a bond length—bond angle term and a
torsion—bend interaction. Figure 5.6 shows typical bicyclic and related hydrocar
bons described in the 1976 review [7].

1. Hydrogen bonds were included explicitly with a 12-10 potential

C C
Un-bongs == Z (R_ili e R_Ig)

H-bonds

2. An attempt was made to include solvent effects by inclusion of the Coulomb term
with 2 distance-dependent relative permittivity.

5.8.3 MM2 (improved hydrocarbon force field) 3. The AMBER force field is a ‘united atom’ one, and hydrogen atoms bonded to
i carbons are not explicitly included. They are absorbed into the atom type

Allinger introduced MM2 in 1977 [8]. At the time there was a deal of discussion, in parameters for neighbouring atoms. .

the literature about how different force fields should represent hydrogen atoms, i.¢. as

*hard’ or “soft’ atoms. A hard atom was said to be one whose plot of force vs. distance

(in the diatom) showed a steep slope. A soft atom was one where the slope was.

gentler. It all boiled down to the repulsive part of the non-bonded interactions but

eventually Allinger decided to retain his exp-6 intermolecular potential. '

4. Lone pairs were explicitly included for sulfur hydrogen bonding.

There are a number of different versions of AMBER; the original united atom version
was later extended to include all atoms. Just to give you a flavour, one modemn
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software package has the following choices

1. AMBER 2

2. AMBER 3 6 The Molecular Potential
3. AMBER for saccharides

4. AMBER 94 Energy Surface

5. AMBER 96

5.8.5 OPLS (Optimized Potentials for Liquid Simulations) [10]

For one-dimensional problems, we speak about 2 molecular potential energy curve.
The simple potential energy curves we have met so far have all shown a single
minimum. From now on, life gets more complicated (or interesting, depending on
your viewpoint).

Like AMBER, OPLS is designed for calculations on amino acids and proteins. The
casiest thing is for me to quote part of the Abstract to the keynote paper:

A complete set of inter molecular potential functions has been developed for use in
computer simulations of proteins in their native environment. Parameters have
been reported for 25 pepride residues as well as the common neutral and charged
terminal groups. The potential functions have the simple Coulomb plus Lennard-
Jones form and are compatible with the widely used models for water, TIP4F,
TIP3Pand SPC. The parameters were obtained and tested primarily in conjunction
with Monte Carlo statistical mechanics simulations of 36 pure organic liguids and
numerous aqueous solutions of organic ions represemtative of subunits in the side
chains and backbones of proteins . . . . Improvement is apparent over the AMBER
united-atom force field which has previously been demonstrated to be superior to
many altematives.

6.1 Multiple Minima

The plot in Figure 6.1 shows how the ethane molecular potential varies with
dihedral angle. The figure shows a full rotation of 360°; all the remaining geo-
metrical variables were kept constant. Note that there are three identical minima
(and of course three identical maxima), and the differences between maxima and
minima are all the same. The ‘1D’ in the figure means that it is a one-dimen-
sional plot. The chemical interpretation is that these three minima correspond to
conformers where the hydrogens are as far apart as possible (ie. in the trans
position), The maxima correspond to conformers where the C—H bonds eclipse
each other.

Multiple minima are common in potential emergy surface studies, as we will ~
see. Consider now the substituted erhane CH,Cl—CH,CL A plot of the potential
energy vs. the CIC—CCI dihedral angle gives Figure 6.2, There ate three minima,
one lower than the other two. The three minima are referred to- as local minima
and the minimum at 180° is called the global minimum. The global minimum
- corresponds to a conformation with the two chlorines as far apart as possible. The
two other minima comespond to conformers where each chlorne is frans to
hydrogen.

I will explain about TIP and Monte Carlo in later chapters. Each aiomic nucleus is
an interaction site, except that CH,, groups are treated as united atoms centred on the
carbon, Hydrogen bonds are not given any special treatment, and no special account
is taken of lone pairs. '

5.8.6 R. A. Johnson [11]

I mentioned earlier the existence of a number of specialist force fields. The Johnson force
field is specific to the pure elements Fe, W and V. The pair poiential terms are written

U=a(R—b) +eaR+d; ife,<R<e
=a2(R—b2)3+CzR+d2 if 82 <R < &3 {573)
=a3s(R—b3) +csR+ds if e3<R<ey -
=0 ' if ea <R

where R is the distance between a pair of atoms, the £s are characteristic distances
and the as, bs, ¢s and ds are parameters.







