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Molecular structure theory tends to deal with the details of individual atoms and
molecules, and' the way in which a small number of them interact and react.
Chemical thermodyramics on the other hand deals with the bulk properties of matter.
. typically 10 particles. There clearly ought to be a link between the two sets of

_theories, even though chemical thermodynamics came to maturity: long before there
" was even a satisfactory atomic theory and does not at first sight draw.on the concept
" of 2 molecule. : el
- Suppose then that we have a macroscopic pure liquid sample; which might consist
of 107 particles, and we want to try to model some simple thermodynamic properties
such as the pressure, the internal energy or the Gibbs energy. At room temperature,
- the individual particles making up the sample will be in motion, 50 at first sight we
- ought to try to solve the equations of motion for these particles. Injview of the large
number of particles. present, such an approach would be foolh ust to try to
- specify. the initial positions and momenta of so many particies wouldnot be possible,

~and in any case such a calculation would give too much information.
-+ Even if we could do this impossible task, the next step would'be to find a way
. in which we could relate the individual molecular information. to. the bulk

" properties. S . _ 1
" For the sake of argument, suppose that the container is a cube. I have shown a two-
dimensional slice through the cube as the left-hand side of Figure 8.1,.and I have
exaggerated the size of the particles by a factor of approximately 10'°.

' 'Ihé. pressure exerted by a gas on a container wall depends on the rate at which
particles. collide with the wall. Tt is not necessary, or even helpful, to know which
particle underwent a particular collision. What we need to know are the root mean
.~ square speed of the particles, their standard deviation about the mean, the temperature -
. and so on. In chemical thermodynamics, we don’t enquire about the behaviour of the
.. individual particles that make up a macroscopic sample; we just enquire about their

~ average properties. - . ' L ‘

Ludwig Boltzmann and Josiah Willard Gibbs understood all these problems, and
invented the subject of statistical thermodynamics 6 get around them.”

If we were to measure the pressure exerted on the walls’ at time intervals
..., t, then we might record results pit), plta). . ple). We could calculate a
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Figure 8.1 Box of particles

sample mean {p) and a sample standard deviation using these results ‘
- : NV,T | NV.T | NV.T | NVT
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(8:1) |
< : 9 e . _Figure 8.2 Canonical ensemble
% =4/~> (p(t) — (p}) g e ‘
=1 ) P
. S o - » . - t in each
' “In & microcanonical ensemble, N, the total energy E and Vare k:%toz:,zsﬁ olne cell
. s]1. In fact, this is a very simple ensemble because energy canno o p are kept
ce"]-nother 'In an isothermal-isobaric ensemble, N, T and the pi;SSI;rthi chemical
| 'zc;);;szant Fmally ‘we have the grand canonical ensemble; ‘t?ll he.re Efasi?nating one be-
- 2 - 1s a
: tant. The grand canonical ensemble
potential are kept cons

‘cause the nuraber of particles is allowed to af?luctuatc;o
' i i i
] then that we consider a canomcal ense e
' '.'2155102:11 tigetllaer with N* - 1 replications. Energy may flow between the
~ or,

i ible
but the total energy of the epsemble is comstant Suppose t{lat ;hzop;;slmwe
. uta] enersies of th; N particles contained in each cell arff E}, E3, artx ” Cel,ls ve
Itt:k eilerhgy snapshot, and find a distribution of energies amongs _

e an | ,

- We might expect that the greater the nutiber of measurernents, the closer the sample
mean would be to the true mean, and the smalier the sample deviation would become,

8.1 The Ensemble

le of N* cells, comprising the

When we considered Figure 8.1, I was careful to-draw your attention to the difference
- rties. T also mentioned that ¢lassical thermo:
really matters to such a themmodynamicist’
are bulk pfoperties such as the number of particles N, the temperature Tand the volume of
the conitainer ¥/ I have represented this information in the right hand box in Figure 8.1
Rather than worry about the time development of the particles in the left-hand box:
in Figure 8.1, what we do is to make a very large number of copies of the system on
the right-hand side. We then calculate average values over this large tumber of -
replications and according to the ergodic theorem, the average value we calculate
is exactly the same as the time average we would calciilate by studying the time
evolution of the original system. The two are the same, : :

s follows:

£ £
_ " N7 cells have energy EJ,

Nj cells have energy E3, etc.

-Ascording to Boltzznann, the E* and the N™ are related by

I'am not suggesting that all the cells in the ensemble are exact replicas at the E-) : :
molecular level; all we do is to ensure that each cell has a certain number of thermo- Ny P (_ T (8.2)
dynamic properties that are the same. There is no mention of molécular properties at” N S exp (_ E '

Y R . . " i kT
this stage of the game. :

So Figure 8.2 is an ensemble of cells all with the same values of N, Vand T This -
~ amay of cells is said to form a canonical ensemble. There are three other important
ensembles in the theory of statistical thermodynamics, and they are named according
to what is kept constant in each cell, Apart from the canonical euseriible, where N, \4
and 7'are kept constant, statistical thermodynamicists concern themselves also with
three others. . ' — e : :

are ies; they are the
Be sure to understand that the energies E?‘ are not m-olec:l‘llar e;e;iifsAlsojg are e
total energies of the collection of the N partuje;; ctoglta::ne: r;:efsaa:r ' ta_kén L e
. is i F sells in the ensemble, and that the
‘N* is the number of cells in !

" comipon arbitrary zero.




.3 The Helmholtz Energy A

The deﬁomi,na_tor'in the expression above plays an important role in_o_ur_théb;y,"a
$0 it is given a special name and symbol R

2= ngp (—-]_cf_;)

Q is"fiii“iﬂxis <ase) the canonicgl pariition function, and it can be used to cal_éﬁlé_lté th
usual chemical thermodynamic functions as follows. Lo

ro.m.the. definition of A we have the follo_win_g

A=U—-TS"

_ B_A)
S==\ar v

e , %)
.'.A__=U+ AT .

(8.8)

- A little man.ipulatipg gives

| (é%— (%))V,N - —];}.3 (ag;g) VN . ; | . (8.9)

L A—Ag=-~ksTInQ

8.2 The Internal Energy U,

added a subscript “th’ for ‘thermodynamic” so that there is no confusion with the to
potential energy of a system {7 (often written &), Internal energy is obviously relate
to the ensemble energy average, but we have to exercise caution. Chemical measure
ments only give changes in the internal energy, not absolute values. I will therefory
Write the internal energy as Uy — Uy, where U is. an arbitrary constant, For_'l_:;'_l_o-
Purposes we can take U, to be. zero. o o PR
We have, for the ensemble of N* menbers

The TUPAC recommended symbol for thermodynamic interna] energy is [, bti_t_f hél__V@'f

Again, the arl + constant A en ince iy anges in A are ever
N b-trary constant Aq can be taken as zero, sipce only ch_gngeﬁ_
: measured. - R

S T .
7 ' - Finally, since

o R _ _ 7—A
and according to the ergodic theorem, thig 1s equal to the time average of Uy — Uy for - : S= 7
any one cell. Using the Boltzmann expression we have | L : '
_ . : , S = AB 8T VN

1 can tidy up Equation (8.5) by noting

8.5 Equation of State and Pressure

o\ 1 cop (- B
%mm&wum; W%

_ .. The pressure is related to the Heimhglt_z_ gn;rgy by :
BN V-1

and so on substitution

'@ﬂ @?
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and 50 we find

._' "6.11:1.Q.'-.'. S
p_kBT( av )

This g atig_in is sometimes called the equation of state. The il and ..

energy.can be derived using similar arguments. They tum out to be

H= kBTZ(QIiQM) +_kBTV(31nQ) |
T Jyn ' .

av
G = —kyTInQ + kg TV (W_B;IQ)
. -

8.6_'-_;?]_1_13_59 Space

methods such as those due to Hamilton and to Lagrange exist for the
eatment of problems in particle dynarnics. Such techniques make use'of
coordinates (written gy, gs, . .., g-) and the generalized momenta (written
PPz, s Pr); in Hamilton’s method we write the total energy as the Hamiltonidn F,
H is the sum of the kinetic energy and the potential energy,-and it is a constant
.provided that the potentials are time independent. & has to be written ‘in ‘ferms-of
the ps and the gs ir a certain way, and systematic application of Hamilton’s equations
gives a set of differential equations for the system. - : . e
To fix olr ideas, consider the particle of mass m undergoing simple harmonic’
motion ‘as- discussed in Chapter 4. In this one-dimensional” problem I wrote the'
potential as" ' s

U= %ks(R - Re}2

50 that the total energy is -

P
f=%m(a) +3 k(R ~ Re)?

KlIputg= R - R,, then the momentum p is m dR/dr dand I can write the Hamilfonizn.

: 57;'*“%?“2 (8.13)

e particle moves through phase space and in this 'éxémp'lé the tfa'jéctory
e’space is an ellipse (see Figure 8.3), which can be casily seen by

£ CONFIGURATIONAL INTEGRAL .

| so for .a genetallproblem with' N at
. equations rather than the 3N second :
straightforward application of Newton’s Law.

problem involving N particles the Hamiltonian willbe a

119

)

P
. .ﬁgure 8.3 Phase space
| rewntmg Equation (8.13)as . "'~ - o L
Z 0
: Hémiltc'm’s equations of motion are
dgy _OH ~ dpi_ OH (8.14)
) E - _é—p_: ’ dr Ogi

oms, we have to solve 6N first-order differential
_order differential equations we would get from

- X . 0 - b a
In the case of a one-particle, three-dimensional system, the Hamiltonian will be

el‘al
V ¢ i - Omenta p, and fOr a more geﬂ
function Of the t}’u‘ee COOId‘lnatcS q and the three I : . |

) .. o onal
3N ps. We say that the ps and the gs together determine a point in 6N-dimension:

phase space, and this point is often denoted I'.

- 8.7 The Configurational Integral -

S Reénrning now to the canonical partition function, Equation (8.3)
) T =

E
L o= Zexp (_ET:
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_hé. 3N-dimensional integral over the position variables is often._ref_erred to as the
onfigurational integral. For an ideal gas & =0 and so the configurational integral is 3
v, where V is the volume of the container. Some authors_inc__ludg the N! in the
efinition of the configurational integral.- T ol
- The canonical partition function for an ideal gas is therefore

the first thing to note is that all points in phase space conthbute to the sum; and the
summation has to be replaced by an integral. For an ideal] monatomic gas the _expr_es
sion becomes . ' R : TR R

e
: -.-;;Qfﬁgggﬁf/?xp (—m) dpdq

The equation is often written with. the Hamiltonian & replacing E, for dle.'féagd 18 -
discussed above. o ' S

(8.19)

VN C2mmks T wf2
=g\ TH

- The partition function for a real system is often written as the product of an ideal past

. guishable from orie another; for particles that can be distinguished there is ng N

term. The integrals.have. 16 be done over the spatial variables of all the N particles

“and also the momentum variables of the N’ particies. The.integral is. therefore
6N-dimensional one.: SO e T

The energy (the Hamiltonian) is always expressible as a sum of kinetic and 00

d an excess part due to non-ideal behaviour - )
: - .. 3 Q = QidcaIQc_xcess'
where. -

tential encrgies, and I have written the mass of each particle m -

i=]

(8.‘20) )

oo o< 2w -

rThe. point of doing. this is that thermodynamic pr_open:ie_s such as A ér_c often mea-

eids L RS DR |
R c sured experimentaily as an ideal and an excess part R

‘Kinetic energies depend on the momentum coordinates p. A_ll.the”pééential ené_rgi__t_é_s
-we will meet depend on the spatial coordinates q but not on the momenta and so the
‘partition function can be factorized into a product of 2 kinetic part and a potential part

11 1 &t e\
0w | o (‘ﬁ 5w e (-‘k_?r')-‘*‘* o

The kinetic integral has to be done over the momentum coordinates of ail N pz_ir'_tic::l_é_s,'
and it can be seen to be a product. of N idgntical_ﬂj;qe-dhncnsional. integials of the

A= Aic_leal + ASReEsS

-~ The ideal parc can be related to 0" and the excess part to Q""-‘ffﬁsf'f

8.8 The Virial of Clausius

Let me focus attention on one particular particle { moving in the.

Figure 8.1. As
this particle moves it will be subject to some varying force F; and ;'

| /exp (—%—lf%) dp, - : _F,-=m% (8.21)
Each of these is a broduct. of three ideﬁtical .stejmfia,rd i“‘_egraif‘_ .Qf t_h? Fy}ne ﬁ Taking the,scalar P;quct o ¢ ,bgt.hrsi des of mis_eq#aﬁon with r; :
oo (-rzle) e | o ememe (31 622)
and the final result is -  Consider How _ﬁlg vector i‘_i.cnﬁt_yi : | | o
e m(T) " [ () e o S S, 529
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whichican also be written

. dV,‘.

R
On comparison of Equations (8.22) and (8.24), T have

-x;+ F; ﬁ m('gt‘“ (ri~v:) "sz)

‘Molecular mechanics (MM) these days tends to be concerned only with predic-
:"-t'idn of local minira ‘on ‘moélecular potential energy surfaces. QSAR properties
“are _6ften-_t:alcu1ated in order to--g.ssist'tﬁgh—volume' screening studies -in pharma-
ceuticals -applications.: Should ‘we want to -study the motions of the molecule, all
that ‘would be needed would be to investigate the ‘normal modes of vibration
(which can be obtdined ‘from the hessian). MM does not take account of zero- .
" point* vibrations -and the calculations refer to a molecule at OK, when it is
~completely at rest. Workers in the modelling field often refer to MM as energy
minimization.. o . : s

. We now turn our attention to the time development of collections of atoms and
““melecules, for which the techniques of Molecular Dynamics and Monte Carlo are
~widely used. _ o . _

" "I have stressed in previous chapters the intermolecular potential energy U (often
" written @). Assuming pairwise additivity, ¢ can be found by summing over all distinct
pairs ‘of particles - :

-0r

s e d o
aFi Fi—mmimEi’,"Vf‘l"%mPiz

P is to sum corres_p‘onding terms on both sides of me"c'qﬁéﬁon for
the box. For N particles each of mass m, this -gives o

L1 L adl A
TR EE ke S nevitmy 2 (s

i=1 i=1 i=1

. Einally, etk & e sviease o g e
. Yo W \ I'age over aﬂ ‘['he parhcles in the b0x WhiCh . R
be in a0 equilibrium state T T assmed to

i=1 S I=
.
N

Us (9.1)
41

The.Sfl:gql}_q it;nnbon the right-hand side is obvi'ousiy the mian kinetic energy 6:f all ‘ﬁ;é :
_particles'in the box. This rmust be 3N, rding to the equipartition of ‘enirs
principle. #¥tal soponding 10 the equiparition of encrgy

o N-l
o e=y

S i=1 j
If thé-'a'ssﬁm’ptioh of pa.i'm"i;se additivity is not valid, then we have to include all
* ‘possible triples, and 0 on _

BT 5 S 25 3) D) o A )

o
. . N-2 N-1 N
~Fa(Xmm) -

=t je=itl =l jemide] kbl

. In‘this book we will generally be concerned with sitzations where the potentials (and
. thé forces) are pairwise additive. If we focus on particle A, then the mutual potential
_energy of A with all the other particles Uy is found from '

:?A => Uy

A

The s1_1;1_1ri’1‘1_a{ion term on the left hand side -3 (Zfiz R ihvélﬁng the f(:).rc.eé:-ah.d
coordma?es:j;s often referred (o as the virial of Clausius.
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and we can find the force on particle A, FA, by dlfferennamng with respect to th,ﬁ
coordinates of partwlc A
Fa=—gradUy .
For example, if we consider. a pair of Lennard-Jones parficles A and B where :
o 12, 6\ L
o =e(() - (&)
Rae/  \Ras ) /
we note that the potential only depends on the distance between. the pamcles :Th
expression for grad U is particularly simple 50 that-
| ou
= — s RBA °
~ OR4Rpa ®
which gives ®
. e (2 ( - \.12 . ( ) )RAB Figure 9.1 Radial distrivution function
Fe) ~\as o
AP AP apart from during their biief collisions. This is why researcher ble to bring the
kinetic theory of gases to such an advanced stage by the end of't eteenth century

Newton’s second law connects force and acceleration by

(and before the existence of a satisfactory theory of molecular cture).
dzRA : The atoms or molecules in a crystalline solid are arranged i ular-order, and
Fy= mA ae - for this reason we usually start a discussion of the solid state from the properties of

regular solids. Once such patterns were truly understood at’the ‘beginning of the
- twentieth century, the theory of the solid state made rapid progress.

Liguids are much harder to model and to study experimentally- than solids and
gases; elementary textbooks usually state that liquids show neither complete order
nor complete disorder. The basis of this remark concerns a property called the radial
distribution function g(r), Consider Figure 9.1, which is a snapshot of the particles in
© a'simple atomic Yiquid.

' We take a typical atom (the grey one, des1gnated ) and draw two spheres of radii r
and r + dr. We then count the number of atoms whose centres lie between these two
spheres, and repeat the process for 2 large number N of atoms. If tbe Tesult for atom {
s gl(r) dr then the rachal d1$tr1but10n funcuon is defined as G

and in principle we could study the time deveiopment of a system by so}vmg tlns_
second-order differential equation, one such equation for each of the particles in our.
systemn. Calculating the trajectories of N particles therefors appears to involve: the
solution of a set of 3N second-order differential equations. Altematively, we could:
use an advanced method such as Hamilton’s to solve 6N first-order differenitial equa
tions. For any set of N particles it is always possible to find three coordinates. that
correspond to translation of the centre of mass of the system, and, if the- particles havei
‘shape’, three coordinates that correspond to rotations. about three axes that pass
through the cenftre of mass.

Most of the eariy molecular dyna;tmcs studies were directed at the problem of
liquid structure, so that is where we will begin our dlscusswn

=;,2g;(r) “« 93)

This process then has to be repeated for many complete shells over the range of
values of r thought to be significant. :
.. _In the case of an ideal gas, we would expect to find the numbe of particies to be
- proportional to the volume enclosed by the two spheres, wlnch dr. This gives
gD =4nr, a sunple quadratic curve,

9.1 -The Radial Distribl_ltion Function

Of the three states of matter, gascs are the easiest to model because the consutuent_"
particles are so far apart on average that we can ignore intermoleculdr mteracuons :



- MOLECULAR DYN CORRELATION FUNCTIONS - : 127

&(r

Distance, r

Figure 9.4 Radial distribution function for liquid superimposed on an ideal gas

Figure 9.2 Simple cubtc Iattice

solid at Iow temperamres, and at high temperatures it resembles the quadratic expected

for an ideal gas. At intermediate temperatures, the two features can be clearly

seen; essentially a solid pattern is superimposed on the gas pattern. This gives the

experimentdl basis for the weIl-lcnown remark about liquid structure quoted
above,

* g9

9.2 Paii Correlation Functions

: The radial distribution function for a gas varies as 477> and so tends to infinity as r
‘tends to infinity. It is usual to remove the 4mr® dependence by defining a related
--quantity called the pair correlation function gup(r), which gives information about
~the probability of finding two particles A and B separated by a distance r. If the
" volume of 2 system'is V and it contains N, species of type A and Ng species of type
"B, then the number densities are Na/V and Ng/V. The fraction of time that the
© differential volume elements dr; and dr,, which are separated by a distance »,
" simultaneously contain species of type A and B is given by

0 : PRI — 2z
Distzance, r )

-+ Fignre 9.3 First part of the radial distribution fanction for a simple solid

‘ Consic}er: now the simple cubic solid shown in Flgure 9.2 whose nearest ne1ghbour .
distance is a. Each atom is surrounded by 6 nearest neighbours at a distance a, 12 at'a’ -
distance E\/2 4@, 8 next-next nearest neighbours at a distance v/3 a, 6 at a further
distance 24 and so on, We would therefore expect to find a radial distribution functien:
similar to'the one shown in Figure 9.3. The height of each peak is proportional to r.he s
nurnber 6f . atoms a distance r from - ‘any given atom. ot

Radial ‘distribution functions can be deduced expenmenfal]y frorn dlffraction shit-
dies. In the case of a liquid, Figure 9.4, the curve *eQernbles tbat expected for 2

NN,
A BgAB(r)dTld‘F)_

*In'a mixture of A and B we Weuld be interested in the three distinct pair correlation
.. functions gaa(r), ger(r) and gAB(r) These pair correlation functtons have a limiting
. vam uf 1 fm 4 ﬂuid
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9.3 Molecular Dynamics Methodology - - <y

In an ideal gas, the particles do not interact with each other and so the pot;cm_:_i_él.@___ -§

zexo. Deviations from ideality are due to the interparticle potential, and most.of’ ; g‘_

carly studies were made on just three types of particle: the hard sphere model, the - b N % ‘
finite square well and the Lennard-Jones model. ' S ¢ Distance, r

9.3.1 The hard sphere potential - TLe . :
' - Figure 9.6 Finite square well

 is the simplest. one imaginable; the system” T
consists of spheres of radii ¢ and U(r) is zero everywhere except when two spheres:
touch, when it becomes infinite, _ I _ e

The hard sphere potential is of great theoretical interest not because jt represents -
the intermolecular potential of any known substance, rather because any calculations
based on the potential are simple. B. J. Alder and T, E. Wainwright introduced th

- The hard sphere poteritiai of Figure 9.5

. stmultaneous equarions of motien. The limitations of this muamerical scheme are J
enamiera;ed and. the important steps in making the program: efficient on
" computers are. indicated. The applicability of this method to:the solution of
' mar,v pmblems. in_both equilibrium. and. nonequilibrivm _sfafist;'gal thermo-
dynamics is discussed. . - o

" modelling technique now known as Molecular Dynamics to the world in a short
Journal of Chemical Physics Letters to_the Editor’ article in 1957 [32]. T]:_;_e'y__;'_ef
ported a study of hard disks, the two-dimensional equivalent of hard spheres.. .

In this second paper they chose a three-dimensional system..of particles and the
finite square well potential shown in Figure 9.6. This potential is: especially simpl_e
because a given particle does not experience any change in velocity except wher it is
separated fro_r_xi another particle by o} (when it undergoes an attragtiye_mllision) or oy
(when it undergoes a repulsive collision). On collision, the veloci_tigg_ are adjusted and
" the calculation restarts. Statistical data are. collected every col_l_i_sibr_lh:_

o m their' .yn.f_l_mic'.calci;latiqn all the particles were given: iﬂitr'ai?_l_-___ve‘locitie':s and
~ positions. In one example, the particles were given equal kineticienergies W1th the
- three direction cosines of the velocity vector chosen at random nitial positions
_. corresponding to a face-centred cubic lattice. Once the initial__: Zhration was .set
-~ up, they calculated exactly the time at which the first collision :_The collision
~: time can be found by evaluating; for every pair in the system, taken for the
projected paths to reach: a.separation of oy or o, : '

2.3.2 The finite squeire well

B.J. Alder and T. E. Wainwright’s 1959 papér- [33]is usual_ly‘re_ga_rd_it;d_the__keyﬁoté
paper in the field, and you might Iike to read the Abstract. R

A method. is outlined by which it is possible to calculate e_xc:zcrly the be.kdviou_rof
several hundred interacting classical particles.. The study of this many-body
- problem is carried out by an electronic computer. that solves numerically the. S

1:: U I two particles A and B have initial positions T4 ¢ and I'pp and velocities v, and
S .- - Vg, then the instantaneous positions at time ¢ will be :
é Fa = TaptUal -
§ Is = I'gp 1 Wp!
giving_ - _ _
o Lo r . YA =Yg =Tap—Tpo-t (IIA — HB)I o
Distce, - s

Figure 9.5 Hard sphere Potentiél‘ . o (A 1)’ = (rao - rB'O.}z"—i- ZI(FA’O ~7Bo) (s — uB). + (uA ~ )



* MOLECULAR DYNAMICS

the last equation as a quadratic in 7 as

(@) _ ~bap+(Pip — “ﬁs(?’ig - Ui))m
g == 2y

In order t6 find the first collision time, all pairs have to'be analysed. All the particles
are then allowed to move for such time, and the velocitis of the colliding pair are
adjusted according to the equations of motion. o _ S

The - finite square well occupies an impoitant place in' the history -of molecular
modelling. Real atomic and molecular systerns have much more complicated mntual

potential energy functions, but the finite square well does 4t least show 4 minimum.

On the other hand, because of the finite square well potential, the equations of motion
-are particularly simple and no complicated nurnerical techriques 4re needed. There
are no accelerations until two particles collide. Tl : L

9.3.3 Lennardjonesium -

lation of a ‘real” chemical system was A. Rahman's 1964 study
on:[34]. He studied a System comprising 864 Lennard-Tones particles
ons appropriate to liquid argon at 84.4K and a density of 1.374 gem™.

A systemof 864 particles interacting with a Lennard-Jones potential and "

" obeying classical equations of motion has been §tudied on o digital computer
(CDC.3600) to simulate molecular dynamics in liquid argon ar 94.4 K and a L
density of 1.374 g cm™ . The pair correlation function dnd the constant of self- "
diffusion ‘are found to agree well with experiment; the latter is 15% lower
than the experimental value. The spectrum -of the -velocity autocorrelation -
Sunction shows a broad maximum in the frequency range w=0.25 (2mkgT/h). .~
The shape of the Van Hove function Gy(r, t) artains a maximum departure from a

: Gaus};sz'an at abour 1= 0.3 x 10™% 5.and becomes a Gaussian again at about
1075 . -

There are several interrelated problems. A ‘sample size has 1o be chosen: this js-
usuaily determined by the available computer resource and the complexity of the -
potential funiction, because the potential function has to-be calculated very many
times during the sirmulation. The number of particles and the density determine the -
' htainer. At the same time we need to'decide on a poten'tiai function; the :

size of th

there is much to be gained by studying the Abstract, so here is the first. -
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* . Figure 9.7 Box of argon atoms

| :néﬁirai .c.h'oir.ié.fbr tl:aé-iﬁeﬁ'gases' is the Lennard-fones ‘potential, and we should note
- thet the L-J potential i$ essentially short range.

.~ S0 many ezyiy papers used the L-J potential that the noun Lennardjonesium was
coined to describe a mon-existent eleinent whose atoms intevacted via the L—J

© potential.

9.4 The Periodic Box -

E --Figme 9.7 shows a suitable virtual box of argon atoms. Examination o.f the figure
- feveals two problems. Ators near the edges of the box will experience quite different

-resultant forces from the atoms near the centre of the box. Secondly, thfe atox'hsj‘will :be
in motion if the temperature is non-zero. As the system evolves in time, it is quite
likely that one of the atoms will pass through the container walls and so disappear

- from the calculation. This has the undesirable effect of reducing the density.

There is a third subtle point: if the atorns are sufficiently light (He rather than Ar),
‘we would need to take the quantum mechanical zero point energy intg effect; even at
" 0K, quantum mechanical particles have 2 residual motion. . )

" The periodic box concept, illustrated in Figure 9.8, gives a solution to the first two

- problems. We appeal tc the ensemble concept of statistical the@odynamics, and
- surround ‘our system' with & large number of identical copies. In this case the. boxes

" ars fruly identical at the atomic level rather than in the usnal thermodynamic sense of
having N, Vand Tin common. - 7 o
' Figure 9.8 shows a two-dimensional slice through a small portion of the system

L (the central box where the atoms dre shown grey) and the copies (where the atoms are
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: CALGORITHMS FOR TIME DEPENDENCE

Figure 9.8 Small part of the molecular ensemble Fig_ure 99 The cut-off distance
S The second problem can be solved by adding a small Imoar termy to the potenn&
shown black). Each copy is identical at the atomic level, and cach atom undergoes the' : ChOSﬁH so-that its derivative is zero at the cut-off distance
same time development as its image in every other copy. As the dark grey. atom (top '
left, central cell) leaves the central cell,.its image epters from an adjoining copy;
shown by the vector displacements in the figure. This keeps. the density constant:
There are no effects due to the walls because each atom in the central cell is under the B
influence of every other atom in the central cell and in afl other cells.
Consider now the dark grey atom (top left in the central cell). We need to calculate
the force on this atom in order to understand its time. development. To do this we
should in principle sumn the pair potential of the atom with every other atorn. lefer—
entiation of the potential with respect to the coordinates of the dark grey atom g1ves
the force on the particle. This would give an infinite sum. .
In this particular case, there is no great problem because the L-) potentlai is short-"-
range. We decide on a cut-off distance beyond which the pair potential will be
negligible; this defines a spherc. In order to treat the dark grey atom, we have to

U
. — Ui - | — — : <
Ui (rpg) = U(-”?E_)- o (drm)ﬂc(“’a el s (g

9 .5' "A!glbrithms' foi-' .Time‘ Dependence

_ Once we have. calculated the potential and hence the force by dxfferentiauon, we have
. to solve Newton’s equation of motion. If Fy is the force on particl A,_whose position
vector is r, and whose mass. 1s my,, then

include contributions from all other atoms m the sphere This is 1llust1-ated as a twom ¥ m ¢ rs
dimensional ‘slice in Figure 9.9. A= RATE
Truncation of the intermolecular potential at a cut-off distance’ introduces two. == maap

technical difficulties: First, the pair potential has a dlsconumuty at the cut—off dis-
tance 7., and secondly, whenever a pair of particles A and B have separation greater.
than r. the total energy is not conserved. The first problem is solved by sluftmg the'
potential function by an amount {/{r.), that is we take :

This is a second-order differential equation that I can write equivalently as two first-
order differential equations for the particle position r, and the velocity vy

‘ dvy 7
Fammagn

_dra
frap>r vA_de

m(rls)ﬂ{U('”,)“U(“) e g
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“be one" of the most accurate and stable techniques -for use in molecular dynamics. ;

L
i
i
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9. 51The leapfrog algorithm which gives (assuming that third-order and higher terms are negligible)

A 31mp1e algonthm for integration of these two equanons numenca,lly in srnaIl nme
steps Ar can be found by considering the Taylor expansion for v(z) .

<)(——><—) <>

2Az
Subtracting and rearranging We get

ra(t —|~. Al) = 21,4 (1) — ralt ~ A + (d rA) (Ar? (9.11)

. This is known as the Verlet algorithm. The acceleration is obfained from the force
-~ experienced by atom A at time ¢. The velocity does not appear in the expression; but it
can be obtained from the finite difference forrnula

.‘The VerIet'alcf)rithm'uses positions and accelerations at time ¢ and the position at .
. - ‘time ¢ — At to calculate 2 new posmon at time 7 4 Az. All these have to be stored at
At AN o “every iteration.
va (t+7) =Va (I "“2_) +aA(t)AI e . '(_918) 1 A variant is thevelocity Verlet algorithm, which requires only the storage of
- - positions,  velocities and accelerations that all correspond to the same time step. It
“takes the form

rA(r + Ar) = rA(.t) + (d;A> At-;-; (d rA) (Ar?

dra\ 1/ /dra @ry
AN = =2 ) o] (=2 —— Ar
vA(w a) (dr),+2<(dr2 + |z n
B .There are many other algonthms in the literature, each with thcn- own strengths and
weaknesses. :

I will‘sw fback and forth betwaen for example, ¥ and dr/de in ‘order to- try to &
Ve 'eadabIhty of the equations. Also; I could have written Vall) or (va)y to'ﬁ
mean the ‘nstantaneous velocity of particle A at time £. The accelcratmn ais calc'i
lated from the force. '

Using the same procedure for the Taylor expansmn of £y &t the t1me pomt t+ 1 / 2_
Ar we get .

(9.13).

rA(t + Ar) =ralt) + V4 (r +A2 )L\z + (9.@)

Equaudri :8) and (9.9) form the so-called Ieapﬂog algorithm, which is reputed’ to:-':'

9.6 Mqlt_'e_h- Salts _

A suitable time increment At for molecular dynamics is a femtosecond (10 s). In
the leapfrog scheme the velocities are first calculated at time ¢4 | /2 At. These are'’;
used to calculate the positions of the particles at time 7+ At 'and so on. In this
way the velocities leap over the posmons -and - then the posmons leap over. the_
velocities.

 Molten salts (such as the alkali halides) are of great technological interest in the field
- -of metal extraction. The first simulations were done by L. V. Woodcock in 1971 _[35]-
" “Molten salts introduce a new problem becausé the potential energy terms are long -
.. fange. Consider_a (hypothetical) one-dimensional infinite crystal, part of which is
" shown in Figure 9.10. The tnshaded ions have charge —(, the shided ions have
. charge +-Q and the spacing between the ions is a. Suppose we start with the central
- (gTey) ion at infinity, and all the other ions at their lattice positions as shown. The
- 'work done W, in bnngmg the’ grey ion from infinity to its place in the lattice is

9.5.2 The Verlet algorithm

If instead we start from the Taylor eipansion of ra(2) we have

- NCAPE 3 20 (1.1 1 )
dr 1/d - LT P S
:A(3+AI)=TA(3)+(“““dI—A) Ar+§( rA) (A2 40 47r60a( SHs—gt
. ; dra YL ANINS W and the term in brackets converges very slowly to its limiting value of In (2). Such
- =rult) — [ =2 i fouifodat e BINE _ : ges v ing value @-
= A0 =) ( dt )r{_\t i 2 ( dr? );\‘AI) - " ® 10’- - - series have to be suramed when calculating the force on a given ion in a periodic box
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The que_st_ioh then is. the extent to- which the .intermolecuié@x potential is pairwise
addi;ive;.such functions may always be resolved into_connibu_t_i_o_ns-from pairs, triples
- and higher contributions . SEUEEE ' S

CUKEe X = 00K, )

Figure 9.10 Pan of a one-dimensional crystal, \;v_hcre the separation between ions is @

Table 9.1  Summation of seriss fér w

c DD UKLX X 4 O L Xy)
Noofterms - ' Sum .~ : e 'i#%é_.k o n Lol :
1 ' = 10000, o o (9.14)
2 - 0.5000 . S T : _
3 e o 0.8333. - In the case of simple fluids such as liquid argonm it is -widely:believed that [/ ig
4 - 0.5833 . .. practically pairwise additive. In other words, the contributions- U®' for p> 2 are
100 WO 5.

negligible.. However, the local structure in liquid water is thought to depend on just -
these higher order contributions and 50 it is unrealistic in px;inéiﬁlé:_ to terminate the
. . eXpansion with the pair contributions. It is legitimate to write the'potential as a sum of
pair-potentials, provided one understands that they are effecti air
somehow take higher terms into account. R
. The classic molecular dynamics study of liquid water is th . Rahrnan and
_F.H. Stillinger {36]. They: wrote the effective pair potential 2s'a sum of two con-
tributions: Lennar_d-_.[ones 12-6 potential Uy ; for the two Qxygén-'atpms

L LA
Cwe=e((@) -())
© . anda function U/, modulated by a function S(RU) that depe_ndé sensitively on the.

molecular orientations about the oxygen atorns:

VAL X)) = Uy (Ry) + SR V(X X))

06882

such as Figure 9.8; in the case of nentral species, the sum is véry'_quickly convergent.
-because of the short-range nature of the forces (see Table 9.1). For neutral systems; a
cut-off radins usually is taken beyond which the interactions are set to zerp, |

9.7 Liquid Water

Water plays a prominent place amongst solvents for_obvious f\j:asons. Two-thirds of-_'-.-
our planet is covered in water, chemical reactions tend to be done in aqueous solution, -

- (9.15)

- The Lennard-Jones parameters were taken to be those appropriat neon, o =282 pm
and £=5.01 x 1077, on the grounds that neon is isoelectronic with water.,

Four point charges ¢J, each of magnitude 0.19 e and each 100pm from the oxygen
nucleus, are emhedded in the ‘water molecule in order to give U i Two charges are
positive, to simulate the hydrogen atomns, whilst the other two are negative and simulate
the lone pairs, The four charges are arranged tetrahedrally about the oxygen. The set of
16 Coulomb interactiong between two water molecules gives U,;. Figu_i-e 9.11shows the

physical properties to be. ‘anomalous’, and the structure. of ice has long interested - _':

both theoreticians and experimentalists, oo L
Neutron diffraction studies on heavy ice D,O have shown that. water'_inqlecules_

retain their identity in condensed phases with very little distortion of their molecular-

(with six degrees of freedom) rathéf than explicitly treating the three nuclei sepa- -

rately (nine degrees of freedom). The classical energy for a collection of ¥ rigid rotor

centre of mass. In this. section I will denote these coordinates by the six-dimensjonal * :
vector X. In terms of the Linear velocities v,, the angular. velocity. vectors w;, the
moments of inertia.I; and the coordinates X; the energy turns out to be. ' 2

+2

€ zzz(mvlz +w;rI‘wl) + U(_.XI:XZ; 7XN) .
pu SR R ; .
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rmmmum energy conformation, with the two ‘molecules’ 76 pr é’pé{f{iﬁ. an oxygé Two important features of the curve are as follows
OXygen distance of 276 pm). ' : o : '

The so-called switching function prevents the charges overlappi 1. The narrow first peak at 275 Pm corresponds to 5.5 neighbouring oxygen atoms.

2. The second peak is low and broad, with a maximum at about 465 pm. The ratio of
" the'sécond peak to the first, 465 pm /275 pm = 1.69, is close to that observed for an -
- 1deal ice structure (2 4/2/+/3 = 1.633). ‘

“The ‘mean square displacement is often calculated. This indicates the average dis-
placement of an atom during a fixed time period.

c iforces in small Jocalized regions of space. One approach is to start
€nsity system with the atoms or molecules place'a on'simple cell lattice
ty'is then increased gradually. .~ ... .0 SRR
Starting velocities then have to be assigned. One technique is to calenlate a valt
of the speed from equipartition of energy, and then assign random directions to each’
particle; _‘ff_ith_thc constraint that the syster has zero overall momentum. The nesxt
step is tolet the system progress for a sufficient number of time steps-in order
to clim;i‘__’."?te @ny undesirable cffects dué to ‘the choice of im’tiél conditions. .Aftc'i'
that, the collection of statistics begins. The temperature is inferred from the average -
al kinetic energies, b

9.7.1 Other water potentials

- Over the years, a number of authors have tackled the problem of finding 2 suitable

pair potential for liquid water All involve a tigid water monomer with a number of

Interaction sites. The original TIPS 3-site model proposed by W. L. Jorgensen [37]

* has positive charges ‘on the hydrogeris and a negative charge (go= — 2gy) on the

_oxygen. The interaction potential is taken as the sum of all intermolecular Coulomb
‘terms together with a single Lennard-Jones 12-6 term between the oxygens

T e e 1 g, A~ B
1t is possible in principle to foliow a rolecular dynamics simulation by displaying’ ='_I7~rzg, %g-' RZ T RE (9.16)
: : : i o0 oo

the atom coordinates at a serjes of time points. It proves more convenient to calculate fonAjon B

certain statistical quantities. I mentioned the pair correlation function g®(r) earlier;
mZWater thg tl;ree distinct types of nuclear pairs lead to three corresponding functions”
£60{r), géH(r} and gg%(r), which give information about the fraction of time that”;
differential volure elements Separated by a distance r simultaneously contain pairs of
the nuclei giveg by the subscripts. These functions all have a limiting value of 1 as”
r—00 _ The (()26 (v} curve is shown schematically in Figure 9.12. The horizontal axjs
is actually a'reduced distance rie. - oo T S

" The p’eirainetei's 95 A and B were chosen to give reasonable energetic results-for gas-
- phase complexes of water and alcohols. The author subsequently reoptimized the
- parameters to give TIP3P, an improved three-site model.

-, - Fonr-Site models have also been used; the oldest is that due to J. D. Bernal and R.
H. Fowler [38], with a more modern version refetred to as TIP4P by W. L. Jorgensen
‘et al. [39]. In this case the negative charge is moved off the oxygen and towards the
. hydrogens at a point along the bisector of the HOH angle. The pair potential is still
calculated according to the ¢qnation above; but more distances have to be evaluated.

e -Stillingcr'ar;d Rahman’s ST2 potential is widely used; this is an improved version
' .of the one discussed above, but adds a Lennard-Jones 12-6 term between the oxygen
3 -atoms. In'all, 17 distances have to bé evaluated,
R N7 Ea .- 9.8 Different Types of Molecular Dynamics =
e ——— Eebii et . .
0 ‘When Newton's equatii.:rns of 'r‘notionA are integrated, the energy is conserved. Since

115 2 a5 g
' - the energy and temperarure are related by the equipartition of energy principle, the

' Figure 9.12 . O~0 pair distribution funetion temperature should also be constant, Slow temperature drifts do occur as a result of



R - MOLECULAR DYNAMICS
A
een.:
g If the:carrent temper ittire

a system of N- particles and 3N 'degl"cééf of. ﬁ_‘éedb;_ni _v'p_ve,__:

the numerical integration and also because of the trupcation of the forces, Sever

“raethods for performing molecular dynamics at' constant temperature have b
propased, of which the simplest is known as rescalin '
“at time ¢ is T(f), then for
have

N
1
2.7
=1

\
w2

) =)

. ,(sgin} =<

To adjust the temnperature to exactly a re
the velocities by a factor
( Tt \ 12

7

ference temperature T, ¢ we simply rescale

3

Scaling the velocities at appropriate intervals can therefore control 1

the systemn. We speak about consiant-temperature melecular dynamics. = -
3. Nose [40] proposed an alternative method that adds _ah extra degree of freedom;

Teferred to a5 2 heat bath, to the atomic degrees of freedom. Extra kinetic encrgy and'.

potential energy terms are added to. the total energy, and the molecular dynamics is

carried out with this. one.extra degre¢ of freedom. Energy can flow back and forth -

- . between the heat bath and the system, and an equation of motion for the extra degree

- of freedom is solved. - -l PRI A E

. .Simﬂar. considerations; apply to the pressure; in. order t

the temperature of

0. control the pressure in.
a system, amy change in volume must be. monitored and :_adjus‘_ned.-_Mct_hods-axc'_ :
available, and such calculations are’ referred to’ as constant-pressure_molecular -

9.9 Uses in Conformational Studies

Molecular dynamics generally is used to study the structure and behaviour of materi- .
als, where one is concerned with the intermolecular. potential. It is. of course also

petfectly possible to study single molecules and it is sometimes used as an aidin.
conformational analysis. As noted previously, there are very ‘many. local micima.on” .
* the potential energy surface and it may be that small variations in torsional angleg do -

not facilitate searching of all regions. S T
The idea is to start with a molecular mechanics local minimum, which corresponds -
t0 a temperature of 0K. We use molecular dynamics to raise the temperature, let the
molecule vibrate for a while at an elevated temperature- and cool it back to 0K,
Hopefully the molecule will then have crossed- over any potential barriers and a re- &

optimization will give 2 new structure.

 USES IN CONFORMATIONAL STUDIES

- number of C—C links in such a molecule. CpoHy, is barely:

141

" To give a simple example; consider the straight chain hydrocarbon CooHap, shown
" in Figure 9.13. A MM -+ optirization starting from the fully strete
the structure shown. There is restricted rotation about each Co C
- chapter I will show how thedries of polymeric molecules focus

d strucnure gave
4 and in a later
i on the end-
‘this and the

to-end distance; the simplest theories predict relationships . be’

principles are the same. There are very many conformers, all s_ifm

Meleular Denamics Averages

Figure 9.14 . End-to-end distance
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101 introduction

~ When discussing QSAR in Chapter 7, 1 mentioned that the molecular volume was
thought to be a useful index and explained how it could be calculated within the
framework of a molecular mechanics (MM) study. L

~ Figure 10.1 shows a diatomic molecule, where the afomic radii are R and Ry The
problem is fo find the voluine of the molecule AB. The volume of atom A is $rR3 and
‘the total for AB'is given by ‘this plus the part of B that is net shared with atom A,
“Thus, we have to be careful miot fo count volume X twice in any caleulation:

1 suggested that the ¢otal could be calculated by surrounding atom B with a régular
grid of side 2Ry, and examining which grid points lay inside B but excluding those
lying in region X, and thése that lay outside atom B. A simple ratio then gives the
contribution to the volume from atom B. The process can be easily extended to any
' polyatomnic system. E _

- Rather than take a regularly spated cubic array of points around atom B, We can
surrotind atom B by an (imaginary) ‘cube of side 2Rg and choose points at random
- inside this cube. For each point, we examine whether it lies outside atom B, in which
case we reject it. If the point lies inside atom B but also inside atom A (ie. it liesin
the X region), we also reject it. Otheérwise we increment the number of successful
~ points.- A 'simple proportionality between the number of successful points and the
* " ‘total rumber tried gives the required volume. ' :

. "'The following BASIC progtam accomplishes the calculation.

Figure 9.15 20 hydfocarbén"_ét end of MD 'éx'p.éﬁr‘.r.zent :

1 the@fpr.ﬁ: set up-a 5 ps molecular dynamics calculation, as shown in Figure 9,13
Thc options are shown, and statistics were collected in an MS/EXCEL file. The
end-to-end distance varied dramaticaily over the ‘experiment, from its initial 'vélue
of 2435 pm through 850 pm. The average end-to '

. "REM -MONTE CARLO CALCULATION OF DIATOMIC A~B VOLUME
©~REM ATOMIC RADII RA AND RB, SEPARATION RAB,
< P1=3.14159265359%
NPOINTS=10000  ~
CRAB=2TLT S . -
UMA=OT L SR BEEEE o .
COYALEDT
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© Figure 10.T A MM diatomic"

CZA=0!

. XB = 0!

YB = 0!

. ZB'=RAB

VA=4/3 4P «RA"3

VB=0

FOR I=1 TO NPOINTS

XI=XB +RB « {2 » RND - 1)

YI=YB-+RB * (2 « KND - 1)

ZI=ZB+RB » {2« RND - 1) IS
DISTB = SQR ({XI - XB}"2 - (YI'- YB)"2 + (ZI - Z8j°25

IF DISTB > RB THEN 2000 L STl
DISTA =SQR {(XI - XA)"2 + (YI - YA)'2+(21- ZA)°2) -
IF DISTA < RA THEN 2000 B
VB=VB+ 1 .

2000 NEXT I

VB =8 % RB"3 » VB/NPOINTS

VTOTAL=VA + VB o

. PRINT . R
;im‘r "VOLUME AFTER"; NPOINTS; "POINTS IS": VTOTAL

D - : ‘

You might have to modify the statements involving RND to make it run with your

version of BASIC. I hiave taken two atoms with radii 2 units and 1 unit, and the atoms.

-are sepatated by Rp that I have set to 2 units. I bave calculated the volume of atom A

as §#R3. I then chose 10000 points at random within a cube of side ZRg surrounding

atom B.

If the point lies outside atom B, then we do nothing apart from.incferﬁent-_ the
counter and progress to the next point. If the point lies inside atom B, then we test . -

whether it also lies inside atom A (in which case we. have already counted it). I hope

- the code is transparent; this little program can be easily extended to deal with a _

polyatomic molecule.

* MONTE CARLO "~ INTRODUCTION

spacing d > I, then the probé.biiity of the needle crossing a line is

- measurements will approach. the mean value of &

- Other properties.suéh as the self-diffusion depend on ﬂuctuation_é
- In statistical thermodynamics, rather than calculating a time aver;

' to the Boltzmann factor

145

“This calculation is an example of the Monte Carlo technique (denoted MC). MCis 2
generic term applied to caleulations that involve the use of random mumbers for. sam-
pling; it became widely used fowards the end of the Second World: War by physicists
trying to study the diffusion of netitrons in fissionable material. In: the MC method
was first discussed by the French eighteenth-century naturalist Bi EWh:O discovered
that if a needle of length [ were dropped at random onto a set rallel lines with

Straightforward thermodynamic quantities such as the pressure \ternal energy
and the Gibbs energy turn out to be impossible to calculate direct L IACIOSCopic
system, siroply because of the large number of particles involved 'In fact, it is not

even sensible to coptemplate recording an initial starting point for 10%* particles, let

~-alone devising methods for solving the equations of motion. Boltzmann and Gibbs
_recognized this problem, and invented the subject of stasistical thermodynamics.

Suppose for the sake of argument that we have a system of N simple atomic
patticles (such as argon atoms) and. we are interested in the total potential energy
@. If the pair potential is Uy(R) and the potentials are pairwise additive, then we have-

N-l N ' S
=N UyiRy) _

=1 jeitd

If I denote the position- vectors of the NV particles measured. at time 7 by R,(z),

- Rg(®), ..., Ry(f), then the position vectors will depend on time and the instantaneous

value of ¢ will depend on the values of the variables at that time: If ‘we make enough
measurements. (1), P(t), ... . D(z,) at times £y, 1z, .. -, L ther;.the"=av_eragc of these

| . (q}) #%isﬁ'(t,-)

fex]

ul mean values.

average over a large riumber of replications of the system (an
theorem tells us that the two aze the same. S

In Chapter 8 I considered the case of a canonical ensemble, which consists of a
large number of replications (or cells), each of which is identical in the sense that the
number of particles, the volume and the temperature are the same. The cells are not
identical at the atomic level, all that matters is N, Vand T, Energy can flow from one

ensemble): The ergodic

© - cell to another, but the total energy of the ensemble is constant. -

Under these conditions, the chance of finding a cell _with energy E is proportional
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tde (E) can be found by averaging’ over the replications

SEew(-g).

ke v v ) - {103
Lep(-gt) o

I explained the imiportance of the configurational integral, which depends on] o

exponential terms involving the tota] mutual potential ‘energy ‘¢ - e

Sl

be xféiaféd"'td‘_ the so-called excess -'ihermodynmg

cl:t'e.nih;ial energy can be obtained from the configuration mtegral

(E) = J o(q)exp (— £3)dq (10.3)

(@) = ‘fexp(—%%)dq

and each ihtééral is approximated by a finite sum of M terms in MC

i o D @O (5 (104
O T e (5D

- and ‘showed how it-could
functions. - -~ - R RIS E AL S
“ 1 have written the configurational integral n 2 simplified ‘way: if there are N
particles, then it is actually a 3§ dimensional integral over the positions of the '
‘particles. We might want t6 take N = icles, ittle th hat |

I we ¢ . ; ; ‘ s, then
Ifiw‘e' caléulate the mutual potential energy ®£q) for a random array of atom:
the array will have a Boltzmann weight of

on(-23)

. y i factor
and if some atoms are close together, then @; will be large and the Boltzmann
ATl . e - o .
Sm;i)st of phase space corresponds to non-physical conﬁgmat:ionss “t;flgblrém a;gm
éne'r«riss apd only for a very small proportion of phase space zieﬁed © A
”.-"fact(;' have an appreciablé value. The authors proposed -a modi ed MC scheme
“where, instéad of choosing configurations randonjdy and then \;'lfe:g di;rl them with
. exl { - @-/k'BT ), configurations were chosen xlxnth a probab :ythe sribution of
- ekgf —@jkBT) and then. weighted equally. This adds a step to g
ol : . the
.. fd]é?frcsa;a méking a move, we-calculate the energy change of th;liﬁzaf ;:fat;slzd;}; o
! : i i the move is . g
energy change is negative, then . allov e s
' Hllxc:;zeiifs t;]:sitivn gticn we allow the move but with a prot;abﬂxty gf i;xp (—@/ksT)
. c o B cT " L. . '
S to-d; this, we gererate a randomi nurber £; between 0 and 1, an

better than Tepeat the words of the authors (e, quote the Abstract):
A gen;ef"di_; method, suitable for fas 'cbmpuri'ng'?ﬁa'cﬁ.iﬁés,'f'of i.-i#é&iigdrfhg sueh -
Properties as eguations of state for substances consisting of interacting- .
‘individual molecules is described. The method consists of a modified Monte

Carlo ‘integration over configuriition space. Resiilts Jor the two-dimensional
ﬁgid—sph_éxe_-;ystem have been obtained on the Los Alamos MANIAC, and qre >

‘They tiao'k:'#"mo-dimensional square array of 224 haid disks with firite radigs,
Each disk was moved in tarn according to the formulas - - :

45.
&3 <exp —-m

o B T e . _nomjnator
o then we allow the maove (o take place and mcrcmen_t.tflc numerator and ;; ominator
o E jgtion (10.1). Otherwise we leave the particle in its old posmox;;in 2

;gEguXt particlé This summarizes the Metropolis Monte Carlo technique.

o the ne . A

X X teafy: Y=Y valy

where & is some maximum allowed distance and the &; are random numbers between O e
and 1. In the case that the move would put one disk on top of another disk, the move is o
not allowed and We progress to the next disk. This is a primitive form of the technique’
known as importance sampling that is a key-feature of medern MC simulations. R,
' f a'more complicated problem ‘such’ as the Leninard-Jones potential, * -

ticated treatient of importance sarfipling i$ needed. The average .-

| imag ite: sl 4 a for ve
i e particle enters the biox from the opposite side. The procedure is repeated for very
G any tridls, and the configurational integral is es:umated as a%n sun:).c cupy an important

i Hy d dmt. systams were the first ones investigated, and they upy an mporian

o 1- CZI in the Listory of modelling. The results of the first success

- place in v e shl

) : thenan
. "Thebox s taken to be periodic, so if a move places the particle outside the box, the




gt T

. tant technical questions discussed in the paper is the procedure. used: to. truncate: a
" potential in a system with periodic. boundary. conditions. = LT

fi

10 X' and ¥ as shown in Figure 10.2.- Then we rotate by @ about the new x-axis -
which changes the y and z-axes.” Finally, we rotate by ¢ about the new z-axis.

* MONTE CARE MULATION OF RIGID MOLECULES 1
fluid was published in 1957 by W. W. Wood and F. R ack
¢ the authors tell the story in their own words. -~ - P

. Yilues obtained by Monte Carlo calculations are reported for the -corﬁpres;ib_ih_ty '
factor, excess internal energy, eicess constant-velume heat. capacity, and the -
radial distribution function of Lennard-Jones (12-6) molecules at the r_'_edz:tééd
temperqgure kpT/c* = 2.74, and at thirteen volumes between v/v* = 0.75 and 7.5
(v is the molar volume; v* = 271/ ? Nor*’; Ny is Avogadro’s number; €% is the

. e
depth and r* the radius of the Lennaid-Jones potential weli). The results a * o
compared with the experimental observations of Michels (=150-2000 arm) and : \ )
Bridgman (~2000~15 000 atm) orargon at 35°C, using Michels’ second virig, A x’

coefficient values for the potential parameters. Close agreement with Michels
is found, but significant. disagreement -with Bridgman. The’ Monte: Carlo:
calculations displaj; the JSuid-solid transition; rhe_‘ti-ansir_io;_z pressui'e: and the
volume and enthalpy increments are not precisely determined. The Lennar
Jones—Devonshire cell theory gives results which disagree throughout the fls
phase, but agree on the solid branch of the isotherm. Limited comparisons with
the Kirkwood-Born—Green results indicate that the superposition appfbxz}ha-
tion yields useful results at legst up to V/vEes 25

‘rotations is

v cosgeosy — singcosfsinyg  singeos+ cosgeosfs
—cos ¢sine — singdcosfcosy ~singsiny 4+ cos.qéc_osﬂ.
“ . singsing- ~cos gsing o

Y sinfeosy R
cosf

They therefore studied 2 three-dlmensmnaI Lcnhar&!_cnés__ ﬂu_id__(i._é. é_rgﬁni) an_d_éom— " (10.6)

pared their results with experimental equation of state data. Ope of the most impo

. ’fﬁere are two technical problemé with the use of Euler angles. First, sarnpling the anglcs
at random does not give a uniformn distribution; it_is.necessary Fo sample 1, cos @ and 1.
Seconci, there are a total of six trigonometric fun_cuon ev?luanons per r.otauor'x. i

LA preferred alternative roakes use of quaternions, which are le_lI—dlE‘l‘l‘eﬂSIOﬂ

.-vectors. A quaternion q is usually written in terms of the scaia; q.l{g.n_:unes go: 91: 2

10.2 MC Simulation of Rigid Molecales

: st : o and g5 as
For rigid non-spherical molecules, it is necessary to vary their orientation as well as '

the position in space; usually each molecule is translated and rotated by rando
amounts once per cycle. The simplest approach is to rotate about each Cartesian axis
in turn by an angle chosen at random but subject to a suitabie maximum allowed’
variation. For example, if the position vector of an atom is the column vector R, then
the position vector afiter rotation by o about the x-axis is givenby: T

a={g0 ¢ 9 g3)"

- and_&lé components sa_atisfy '
B R rE=1
o cosa 2 S 0. be related to the; Euler angles as follows
N0 msina cosa /o o , :
o . | go = cosdfcosi(p+v)
g1 = sinifcosi{¢ — )
o q2_=_sin%95in%(¢_—¢)
. g3 = cosifsin(¢+ )

The three Euler angles ¢, 6 and 1 are often used- when discussing rotational mation,

(10.7)
First of all we rotate by ¢ about the Cartesian z-axis. This changes the x and y-axes -




150 S

o .The.-rot'aiion Matrix can be written ag” Lo

?i TA-B -G 2gi0; 4 g,

Tl e -qy) gl gl o
S 2(41Q3 + qoqz) 2(q2q3 . qﬂq].)

2(grgs *"q.fogz) A
‘:22(42%3 + gog;) IR
B-n-G+g)

1 Introduction to

and all that is nece iS to gemerire for hlo ' '
‘ hat is necgssary 15 to generate four snitahle random numbers, - &

L A

s

103 Flexible Molecules

S s i | PR : . :
ﬁj,:ulm;l:a;,c:zz Ot;;‘ ﬂtgmt'ﬂe.molecul_es' dre difficult to 'ﬁéffon'n' unle'ss-tﬁé
Y to gencrate 0 t e_.mte_mal -fiegrees‘ of freedom - are kept fixed.: Thé
et ina;! .HE.:: conﬁgur;%uo'n' is to perform random changes 't‘d e
o esn:r : gal_atomjs i the ;nolecule but it is a common e‘iberi—-
L el ch 8¢S are needed in order to prodiice an acceptable Boltzmans
the’ polis MC sense). ' s

By the early days of the twentieth century, scieritists had ‘siccessfully developed three
f the four great cornerstones of physics; Sir Isaac Newton’s mechanics, James Clerk
Maxwell’s electromagnetic theory and Albert Einstein’s theoiy of special relativity.
They had a picture of the physical world where matter was made from point particles
and radiation consisted of electromagnetic waves, and this picture seeined to explain
all known physical phenomena with just a few untidy exceptions.
.. These untidy exceptions comprised phenomena such as the theory of black body
| radiation, the photoelectric effect, Compton scattering, atomic structure and spectra
‘and a few othér apparently unrelated experirnental findings. I don’t have space in this
“book to-ge into the historical detail; I will simply say that a thorough study of such
- phencrenaled to the fouirth cornerstone, quantum theory. Every textbook that has to
_-deal with giiantum theory has its own particular treatment and starting point, and this
~one is'no exception; I am going to assume that you have heard of Erwin Schrodinger
~and his farhous eduations, and start the discussion at that point. Perhaps I can reassure
you by saying that most professional ‘scientists percéive quantum theory as a hard
‘subjéct (along with electromagnetism). Even Schrodinger didn’t fully understand the
" physical meaning that we now attach'to his wavefunctions when he first wrote down

'his famous equation and solved it for the hydrogen atom. .

1.1 The Schrddinger Equation _

- Consideér then the"éimple case of a particle of mass m» constrained to the x-axis by a
-+ potential T(x, 1) that depends on x and time . 1 have allowed the potential to be time
" dependerit in order to cover the possibility of (for example) an electron being influenced
© by an external electromagnetic wave. Schrodinger’s time-dependent equation states

L , .. h2 2 - N e K 5% (. 1 o






