

DUAL PHASE LXE TPC: THE XENON EXPERIMENT

Sara Diglio

diglio@subatech.in2p3.fr (H111)

WHY XENON AS A DETECTOR MEDIUM?

- High mass number : high rate for Spin Independent interactions ($\sigma \sim A^2$)
- Odd-nucleon isotopes : ¹²⁹Xe, ¹³¹Xe for Spin Dependent Interactions
- Self shielding : high Z=54, high density ρ ~ 3 kg/l
- Intrinsically pure: no long-lived radioactive isotopes (⁸⁵Kr that can be reduced to < ppt)</p>
- Charge & Light : highest among the noble liquids
- Scalability : compact detectors, scalable to larger dimension

SCINTILLATION AND IONIZATION SIGNALS

Bottom PMT array

Bottom PMT array

Bottom PMT array

Bottom PMT array

$S1 \rightarrow light$

Prompt Scintillation

S2 \rightarrow charge

Proportional scintillation following e⁻ drift and extraction into gas

3D Interaction vertex reconstruction

X and Y position from S2 hit pattern on top PMTs

Figures from XENON100

3D Interaction vertex reconstruction

X and Y position from S2 hit pattern on top PMTs

THE STATE-OF-THE-ART: DRIVEN BY LXETPC EXPERIMENTS

Minimum at σ_{SI} = 4.1 x 10⁻⁴⁷ cm² for a WIMP of 30 GeV/c²

THE XENON PROJECT

Time

<image/> <section-header></section-header>	<image/> <section-header></section-header>	<image/> <section-header></section-header>	<image/> <section-header></section-header>
2005-2007	2008-2016	2012-2018	2019-2023
25 kg - 15cm drift	161 kg - 30 cm drift	3.2 ton - 1 m drift	8 ton - 1.5 m drift
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²

THE IMPRESSIVE LXETPCS AS WIMP DETECTORS

XENON1T

SCALING CONSIDERATIONS

Technological challenges

- Longer drift length \rightarrow HV
- Increased mass \rightarrow cryogenics, LXe purification, safe storage
- Detector response \rightarrow calibration & required corrections
- More or bigger photo-sensors \rightarrow LY, QE, long term stability
- Diameter \rightarrow TPC electrodes

Ultra low backgrounds

- Cosmogenic backgrounds \rightarrow underground laboratory, μ -veto, n-veto
- Fiducialization
- Detector materials
 - Radio-pure detector components, surfaces, γ 's, neutrons from (α ,n)
 - very clean cryo-liquid \rightarrow e-drift length, avoid ²²²Rn, ⁸⁵Kr, ...
 - techniques to select clean materials (g and Rn screening)
 - techniques to monitor LXe purity at required level
- Active background suppression \rightarrow distillation

LABORATORI NAZIONALI DEL GRAN SASSO

THE XENON COLLABORATION

Sara Diglio

Sara Diglio

Sara Diglio

Active removal of

Kr contamination

in Xe

WATER SYSTEM AND CHERENKOV MUON VETO

Water System

Goals

- Provide a "house" and clean water for an active shield around the LXe detector
- Provide access points and breakthroughs for water purification, calibration sources and detector leveling

Water Cherenkov Muon Veto

Goal

Identify cosmic ray muons reaching the detector and their induced neutrons that are a source of background for XENON1T

Principle: detection of the passage of the muon or its secondary charged particles through the Cherenkov light they produce in a mass of pure water surrounding the cryostat

E. Aprile et al. (XENON Collaboration), JINST 9, P11006 (2014)

WATER CHERENKOV MUON VETO

- Active shield against muons
- 700 m³ of demineralized water
- 84 x 8" PMTs
- Muon tagging efficiency > 99.5%
- Can suppress cosmogenic background to < 0.01 ev/tonne/yr

CRYOGENIC AND GAS SYSTEMS

CRYOGENIC AND GAS SYSTEMS

THE CRYOSTAT

Goal

a ultra-high-vacuum, thermally insulated system made of low-radioactivity material, to contain the detector with 3.5 tons of LXe at -95 °C and 2 bar pressure and to couple it to the cryogenics system outside the water shield

CRYOSTAT IN THE WATER TANK

TIME PROJECTION CHAMBER

Goal

build a ultra-low-background twophase XeTPC with the best performance for WIMP detection

TIME PROJECTION CHAMBER

TIME PROJECTION CHAMBER

PHOTOMULTIPLIERS (PMTs)

- 248 Hamamatsu R11410, 3" PMTs
- Low radioactive background
- 35% QE @ 178 nm
- operating gain 5x10⁶ @ 1.5kV stable within 1-2%
- Extensive pre-testing/characterization campaign

E. Aprile et al. (XENON), Eur. Phys. J. C75 (2015) 11, 546 arXiv:1503.07698

MATERIAL SCREENING AND SELECTION

Goal

Improve radio purity of all materials used in XENON1T detector by screening and selection: all relevant components of the cryostat and the TPC have been measured

GeMPI-1, LNGS

GeMPI-4, LNGS

GIOVE, MPIK

- multiple facilities available to the Collaboration
- 200 samples measured with gamma spectroscopy and ~40 samples with mass spectroscopy

GATOR at LNGS

LNGS screening facility

RADON CONTROL AND MEASUREMENT

Goals

- Select construction materials with low radon (²²²Rn) emanation rate
- Implement measures to further reduce ²²²Rn (alternative materials, surface cleaning procedures, etc.)
- Quantify and locate remaining ²²²Rn sources

Method

- ²²²Rn detectors: Ultra-low background proportional counters
- Measurement of fully assembled sub-systems (cryostat, purification system, cryogenic system)
- Development of surface cleaning procedures optimized for ²²²Rn in cooperation with TPC group

Dedicated ultra-low background gas handling system for samples testing

GAS HANDLING AND IMPURITY CONTROL

It takes ~600.000 liters of Xe gas to fill XENON1T with 3500 kg of LXe

GAS HANDLING AND IMPURITY CONTROL

It takes ~600.000 liters of Xe gas to fill XENON1T with 3500 kg of LXe

Goal

Measure impurities level of each cylinder of Xe gas prior to transferring into storage vessel (ReStoX) using a dedicated Gas Chromatograph

Method

- Connect and analyze up to four gas cylinders
- Recuperate gas residuals during detector filling
- Interface for xenon transfer (detector to bottles, distillation column to bottles, bottles to bottles)

PURIFICATION SYSTEM

- Electronegative impurities in the Xe gas and from materials outgassing reduce charge (and light) signal
- To drift electrons over 1 m requires < 1ppb (O₂ equivalent)

Goal

clean Xe from electronegative impurities via continuous gas purification through heated getters

Charge loss by impurities corrected with e-lifetime measured from ^{83m}Kr calibration

RECOVERY AND STORAGE SYSTEM

Fast Recovery and Storage of Xenon: **ReStoX**

Goals

- Store up to 7600 kg of Xe in gaseous or liquid/solid phase under high purity conditions
- Fill Xe in ultra-high-purity conditions into detector vessel
- Recover all the Xe from the detector: in case of emergency all Xe can be safely recovered in a few hours

ReStoX Construction Phases

CRYOGENIC DISTILLATION COLUMN

Goal

Active removal of ⁸⁵Kr contamination in Xe

• on-line distillation used to reduce Kr/Xe while taking data

CRYOGENIC SYSTEM

Goals

liquefy 3500 Kg of Xe and maintain the Xenon in the cryostat in liquid form, at a constant temperature and pressure, and so for years without interruption

All critical detector parameters are stable throughout science runs

Goal

Accurately calibrate the detector response to electron and nuclear recoils

Internal Calibration systems

- Introduce radioactive sources directly into the gaseous xenon for uniform illumination
- Use ²²⁰Rn, ^{83m}Kr and tritiated methane

Goal

Accurately calibrate the detector response to electron and nuclear recoils

- Internal Calibration systems
 - Introduce radioactive sources directly into the gaseous xenon for uniform illumination
 - Use ²²⁰Rn, ^{83m}Kr and tritiated methane
- Calibration Belts
 - Allow for transport of external sources around the cryostat
 - \circ Two belts for vertical displacement of sources
 - \circ One belt below cryostat

Goal

Accurately calibrate the detector response to electron and nuclear recoils

- Internal Calibration systems
 - Introduce radioactive sources directly into the gaseous xenon for uniform illumination
 - Use ²²⁰Rn, ^{83m}Kr and tritiated methane

• Calibration Belts

- Allow for transport of external sources around the cryostat
- $\,\circ\,\,$ Two belts for vertical displacement of sources
- One belt below cryostat
- Neutron generator
 - Mono-energetic (2.5MeV) neutrons from deuterium-deuterium fusion
 - Double scatter of neutrons, calibration of nuclear recoil response

Goal

Accurately calibrate the detector response to electron and nuclear recoils

• Internal Calibration systems

- Introduce radioactive sources directly into the gaseous xenon for uniform illumination
- Use ²²⁰Rn, ^{83m}Kr and tritiated methane

• Calibration Belts

- Allow for transport of external sources around the cryostat
- $\,\circ\,\,$ Two belts for vertical displacement of sources
- One belt below cryostat

Neutron generator

- Mono-energetic (2.5MeV) neutrons from deuterium-deuterium fusion
- Double scatter of neutrons, calibration of nuclear recoil response

• LED Calibrations

- Fiber optics guide light from external LED light sources into TPC
- $\circ~$ Used to monitor performance of PMTs

DATA ACQUISITION (DAQ) & COMPUTING SYSTEM

Data Acquisition Goal

Read the data from PMTs at high speed, select interesting events (online veto and event selection), store data to file, process raw data to get to physical quantities.

Computing System Goals

- Providing enough
 computing
 facilities to
 process raw data
 and to allow data
 analysis by all
 Collaboration
 members
- Development and use of sharing resources

MONTE CARLO SIMULATION

Goal

Reproduce via software the performance of the XENON1T detector, and predict the sensitivity of the experiment

Method:

- Input from screening campaign by all detector components
- Monte Carlo simulation with GEANT4
- Statistical treatment

Position of the ER background from the materials ← they are negligible inside the 1 ton fiducial volume

Bkg (evts/ton/year)	
0.32	
0.22	
0.21	
0.75	

XENON1T DATA TAKING & RESULTS

- DM total exposure SR0+SR1: 278.8 Live days
- Calibration:
- \circ LED \rightarrow PMT gain monitoring
- \circ^{83m} Kr \rightarrow Stability monitoring, Signals corrections
- \circ^{220} Rn \rightarrow Low energy electronic recoils: ER-bands
- O²⁴¹AmBe and NG → Signal response: NR-bands

LED CALIBRATION

PMT gain evolution during science data taking

^{83M}KR CALIBRATION

- Internal ⁸³Rb (^{83m}Kr) source
- Uniformly distributed within the LXe
- 2 γ rays : 32 keV & 9 keV
- Energy region of interest for DM
- Short decay lifetime → allow for a fast restart of DM data taking

^{83M}KR CALIBRATION

Signal corrections

- position-dependent light collection efficiency
- $\circ~$ position-dependent S2 amplification
- electric field non-uniformity
- electron lifetime cross-check
- light/charge yield stability

Light collection efficiency maps

0.88

0.84

0.80

40

²²⁰ RN CALIBRATIONS

- Internal ²²⁸Th source emanates ²²⁰Rn directly into LXe
- β -decay of ²¹²Pb to ²¹²Bi \rightarrow low energy events (2-20 keV) to calibrate ER band
- Decay of activity dominated by ²¹²Pb half-life (10.6 h)
 - \circ No long lived isotopes
 - $\circ~$ No purification requirement on LXe
- Bkg and signal predictions from tuned models ightarrow Fitting model to data

²⁴¹ AMBE & NEUTRONS CALIBRATIONS

- External ²⁴¹AmBe source mounted on a belt
- The α particles emitted by the decay of the Am collide with the light Be nuclei producing fast neutrons \rightarrow used to calibrate NR-band
- Upgrade to neutron generator
 - Commissioned May 2017
 - \circ Calibration time: weeks \rightarrow days
- Bkg and signal predictions from tuned models ightarrow Fitting model to data

Blue: ER, Red: NR; ---: median, ----: $\pm 2\sigma$

DETECTOR STABILITY MONITORING

The quality of the data strongly depends on detector conditions during the experiment operation

→ It is important to check the stability of the detector during data-taking

SI WIMP-NUCLEON 1 T X YEAR RESULTS

Minimum at σ_{SI} = 4.1 x 10⁻⁴⁷ cm² for a WIMP of 30 GeV/c²

$\mathsf{XENON1T} \rightarrow \mathsf{XENONnT}$

XENON1T infrastructure already designed to host XENONnT

Fast upgrade of XENON1T

- Total LXe mass ~8 t
- Active LXe mass increases
 x3: 2.0 t → 6.0 t
- Additional PMTs

 (and electronics): 248 → 476
- New TPC and Inner Cryostat
- Additional recovery system

All the other systems already sized to host and run XENONnT:

Outer Cryostat, Cryogenics, DAQ, Purification, Support structure, Muon veto, DAQ, Calibration system, screening facilities

XENON1T POST SR1 TESTS TOWARDS XENONNT

- Increased purification gas flow
 - $\,\circ\,$ increased by 39% wrt Q-drive
 - \circ electron lifetime of 1 ms reached

RESTOX2: SXE /GXE STORAGE SYSTEM

- ReStoX capacity is not sufficient for XENONnT
- XENONnT needs to increase the recovering capacity in case of emergency

XENONNT : TPC ELECTRODES

Conception, Design and Construction of the 5 electrodes

- Work started in summer 2017
- design, relationship with companies, mechanical simulation, mechanical realization and assembly ...
- Prototype tested at LNGS in summer 2018

DARWIN

Ultimate liquid xenon TPC

- 2.6 m drift length
- 2.6 m diameter TPC
- Active target ~40 t
- Aim at sensitivity of a few 10⁻⁴⁹ cm² limited by irreducible v-bkg :
- Projected to start after XENONnT

