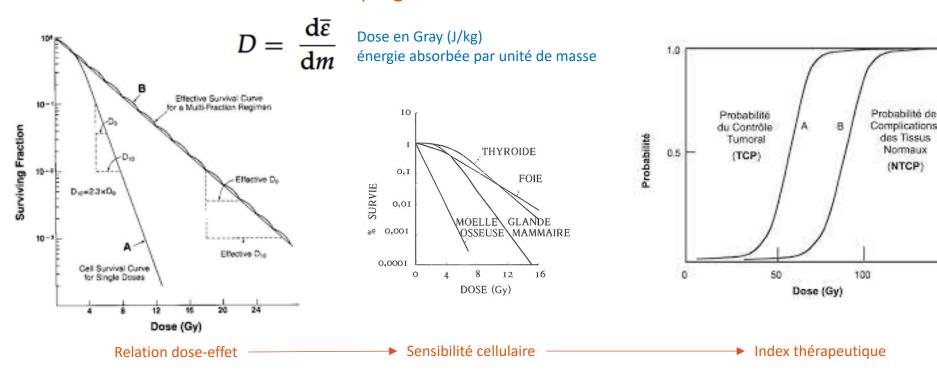


PAYS DE LA LOIRE

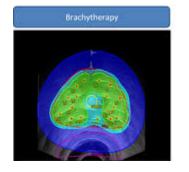
Radiothérapie interne vectorisée

N. Varmenot – L. Ferrer PhD

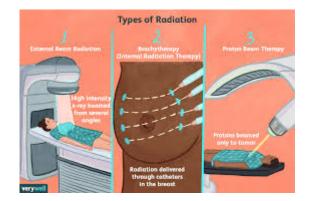
Physiciens médicaux en médecine nucléaire


Un centre d'excellence, un accès pour tous

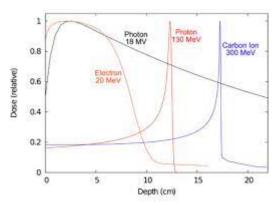
Objectif de la radiothérapie



Tuer les cellules tumorales en épargnant les tissus sains

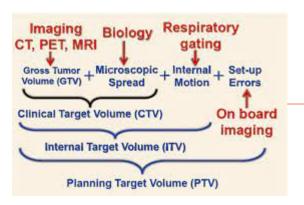


Thérapie externe



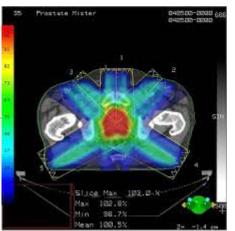
Plan de traitement

Dépôt de dose (énergie) fonction du type de particule

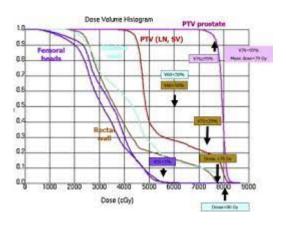

Source externe

WHAT DISERTOR TOTAL DISERTAL DISERTOR AND RESERVOR. ALL RIGHTS DESCRIPTOR

Thérapie externe



PAYS DE LA LOIRE



Définition des volumes cibles et OAR

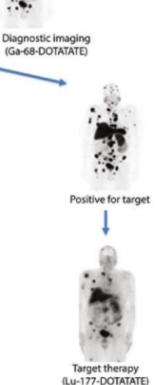
Plan prévisionnel de dose par calcul sur approche balistique

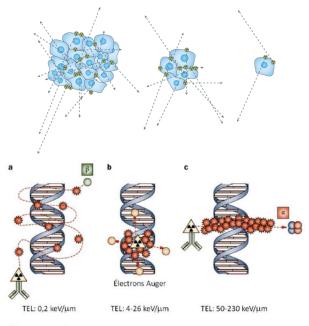
Objectifs dosimétriques

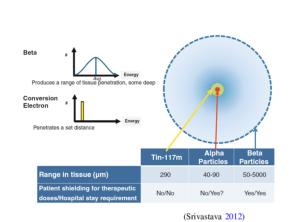
Organ at risk	Whole-organ tissue tolerance	Range of maximums	Partial volume dose limits (% volume at dose in Gy)		
Liver	30 Gy	30-45 Gy	51% V11.9 -60% V30		
Kidneys	23 Gy	23-45 Gy	Left: 25% V12-20% V19.4 Right: 8% V10.5-33% V22.5		
Spinal cord	47 Gy	35-50 Gy	60% V15.5-10% V45		
Small intestine	40 Gy	42.9-45 Gy	48% V19-33% V55		
Heart	40 Gy	45 Gy	50% V30-60% V40		
Lungs	17.5 Gy	45-60 Gy	50% V20-33% V30		

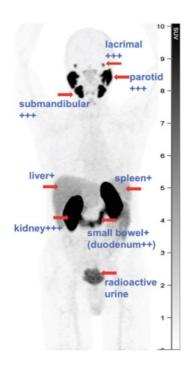

Un centre d'excellence, un accès pour tous

Contraintes radiobiologiques organes à risque

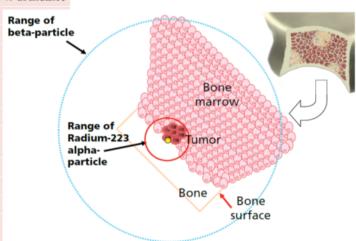








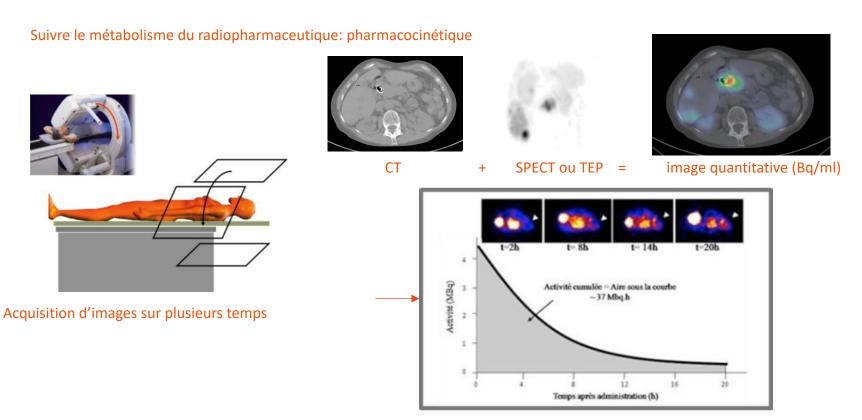
Métabolisme spécifique du radiopharmaceutique: couple radionucléide/vecteur très important! Echelle spatiale au niveau cellulaire Notion de temporalité importante



Radionucléides dédiés à la thérapie

Radionaticaes deales and therapie							
T 1/2 (days)	Principal y energy for imaging, KeV(%)	Therapeutic particle(s) (avg. energy, KeV,	% abundance				
3.35	159 (68)	β- (162)	Range of				
2.58	186 (40	β- (141)	beta-particle				
3.26	93. 184, 296 (40, 24, 22)	15 Auger, 0.04–9.5 keV, 572 % 10 C.E, 82–291 keV, 30 %					
2.80	171, 245 (91, 94)	6 Auger, 0.13–25.6 keV, 407 % 12 C.E, 144–245 keV, 21 %	/				
14.00	159 (86)	8 C.E. (141 keV avg., 114 %)	/_				
13.3 h	159 (83)	12 Auger, 23–30.4 keV,1371 % 7 C.E, 0.014–32 keV, 17 %	R R a				
8.0	365 (82)	β- (181)	\p				
1.94	103 (30)	β- (280)	١ ١				
7.2 h	79 (21)	α (5867, 42 %)					
46 min	441 926)	$\beta\text{-}$ (425); α (98 %, from Tl-209 daughter, 2 % from Bi-213)					
	T 1/2 (days) 3.35 2.58 3.26 2.80 14.00 13.3 h 8.0 1.94 7.2 h	T _{1/2} (days) Principal y energy for imaging, KeV(%) 3.35	T $_{1/2}$ (days) Principal y energy for imaging, KeV(%) Therapeutic particle(s) (avg. energy, KeV, 3.35 159 (68) $β$ - (162) 2.58 186 (40 $β$ - (141) 3.26 93. 184, 296 (40, 24, 22) 15 Auger, 0.04–9.5 keV, 572 % 10 C.E, 82–291 keV, 30 % 2.80 171, 245 (91, 94) 6 Auger, 0.13–25.6 keV, 407 % 12 C.E, 144–245 keV, 21 % 14.00 159 (86) 8 C.E. (141 keV avg., 114 %) 13.3 h 159 (83) 12 Auger, 23–30.4 keV,1371 % 7 C.E, 0.014–32 keV, 17 % 8.0 365 (82) $β$ - (181) 1.94 103 (30) $β$ - (280) 7.2 h 79 (21) $α$ (5867, 42 %) 46 min 441 926) $β$ - (425); $α$ (98 %, from Tl-209 daughter,				

Couplage théranostique

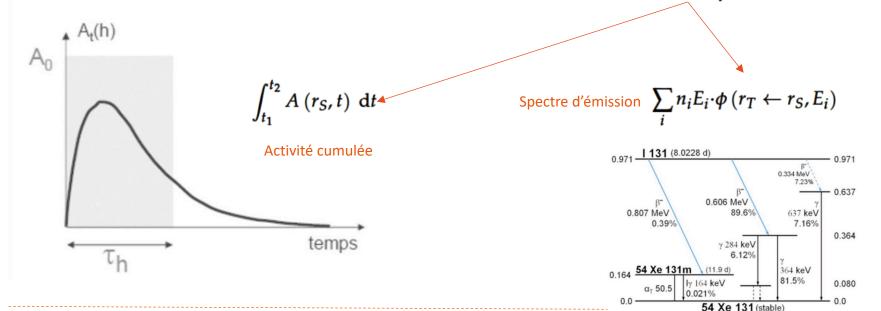

Voir où l'on traite

Radionuclide pair T 1/2 (days) Imaging positron, KeV (%) Therapeutic particle(s) (avg. energy, KeV) imaging/therapeutic Scandium-44/Scandium-47 3.97/3.35 $y \pm 511 (99.9\%)$ β - (162) 0.53/2.6 Copper-64/Copper-67 $y \pm 511 (38\%)$ β - (141) Gallium-68/Gallium-67 68 min/3.26 $y \pm 511 (176\%)$ 15 Auger, 0.04-9.5 keV, 572 % 10 C.E., 82-291 keV, 30 % Yttrium-86/Yttrium-90 0.61/2.7 $y \pm 511 (35\%)$ β - (935) Iodine-124/Iodine-131 4.2/8.0 $y \pm 511 (38\%)$ β - (181)

Un centre d'excellence, un accès pour

Pharmacocinétique pour chaque organe d'intérêt (OAR) et tumeur si possible

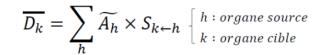
Un centre d'excellence, un accès pour tous

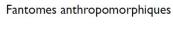

Institut de Cancérologie de l'Ouest

Calcul de la dose par volume (organe)

$$\overline{D}_T = \frac{1}{m_T} \int_{m_T} D \, \mathrm{d}m$$

Dose proportionnelle au nombre totale de désintégration dans le volume


$$\overline{D}_T = \int_{t_1}^{t_2} A(r_S, t) dt \cdot \frac{1}{m_T} \sum_{i} n_i E_i \cdot \phi(r_T \leftarrow r_S, E_i)$$


Dans l'idéal, calcul avec les données patient (CT et activité cumulée) et technique Monte Carlo MAIS ressources info +++

Utilisation de modèle pour le calcul de la dose

Formalisme du MIRD

Représentation du patient :

- · organes décrits par des formes simples
- · densité réaliste

Calcul de fractions absorbées: Monte-Carlo Analytique

Estimation de la dose délivrée pour: ≠ isotopes

MIRD pamphlets

≠ radiopharmaceutiques ≠ biocinétiques

MIRD dose estimate reports

Fantômes mathématiques plus réalistes

- Calcul de la dose à l'échelle de l'organe
- Personnalisation du calcul en pondérant les masses avec les organes réels du patient (imagerie CT)
- Développement de la méthodologie et des algorithmes pour un calcul à l'échelle du voxel

Table 1 Radiation dose estimates for 99mTc-labeled phosphates and stitut de phosphonates ancérologie

Estimated absorbed dose l'Ouest

	Estimated absorbed dose		l'Ouest	
Target organ	mGy/MBq	rad/mCi	PAYS DE LA LOIRE	
Adrenals	2.10E-03	7.77E-03		
Bladder	4.80E-02	1.78E-01		
Bone surfaces	6.30E-02	2.33E-01		
Brain	1.70E-03	6.29E-03		
Breasts	7.10E-04	2.63E-03		
Gall bladder	1.40E-03	5.18E-03		
GI-tract:				
Stomach	1.20E-03	4.44E-03		
Small intestine	2.30E-03	8.51E-03		
Colon	2.70E-03	9.99E-03		
Upper large intestine	1.90E-03	7.03E-03		
Lower large intestine	3.80E-03	1.41E-02		
Heart	1.20E-03	4.44E-03		
Kidneys	7.30E-03	2.70E-02		
Liver	1.20E-03	4.44E-03		
Lungs	1.30E-03	4.81E-03		
Muscles	1.90E-03	7.03E-03		
Esophagus	1.00E-03	3.70E-03		
Ovaries	3.60E-03	1.33E-02		
Pancreas	1.60E-03	5.92E-03		
Red marrow	9.20E-03	3.40E-02		
Skin	1.00E-03	3.70E-03		
Spleen	1.40E-03	5.18E-03		
Testes	2.40E-03	8.88E-03		
Thymus	1.00E-03	3.70E-03		
Thyroid	1.30E-03	4.81E-03		
Uterus	6.30E-03	2.33E-02		
Remaining organs	1.90E-03	7.03E-03		
Effective dose (mSv/MBq)	5.70E-03	2.11E-02		

PAYS DE LA LOIRE

Drug administration

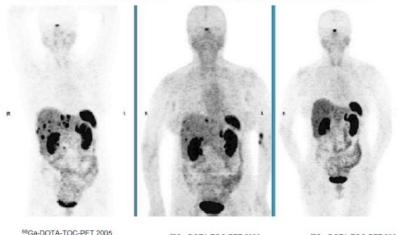
- administered activity (Bq)
- administration mode
- duration

Data acquisition

- imaging modalities
- biological samples
- device settings
- scheduling

Activity quantification

- calibration (counts/Bq)
- · organs-of-interest
- VOI


Dose computation

- TAC fitting
- dose computation model/software

G. Marin et al. Physica Medica 56 (2018) 41-49

⁶⁸Ga-DOTA-TOC-PET prior to and after therapy with radionuclides — Complete Remission

57 years old female patient

- 68Ga-DOTA-TOC-PET 2006
- 68Ga-DOTA-TOC-PET 2007

- *St. p. carcinoid tumor of the pancreas with liver metastases, 1993
- •5 times 90Y-DOTA-Tyr3-Octreotide therapy: 19,3 GBq from july 2003 to may 2004
- 4 times ¹⁷⁷Lu-DOTA-Tyr³-Octreotate therapy: 29,3 GBq from november 2005 to july 2006
- •Regression in tumor size (CT) and decrease of chromogranin A levels.

Merci de votre attention

