

UE Recherche – From Abstract Submission to Mini-Conference

Understanding Peer Review in Research

IMT Atlantique , November 14, 2025

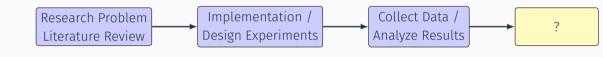
Outline of the class

Introduction: Publish in a Journal

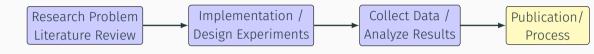
The Peer Review Process

Exercise: Peer Review Example

Peer Review in the UE Recherche


Peer Review Guidelines using EasyChair

Summary and Next Steps


Part of the beamer code was generated by a LLM.

Introduction: Publish in a Journal

From Idea to?

From Idea to Publication: Sharing Your Research

Purpose of Publication (see previous classes)

- Spread results to the scientific community.
- Share knowledge and foster discussion.
- Receive validation and feedback.
- Make your work citable and reproducible.

Choosing a Journal: Scope and Audience

- Journals differ by discipline, audience, and impact.
- Societies/publishers define scope and standards.
- Factors to consider:
 - Topic relevance
 - · Target audience
 - · Impact factor and reputation

Impact Factor (use with caution)

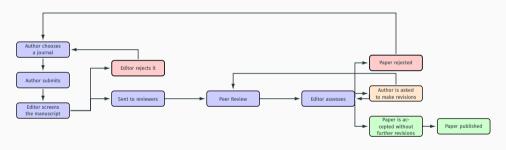
Impact Factor (year N) = $\frac{\text{Citations in year N to papers published in years N-1 and N-2}}{\text{Number of papers published in years N-1 and N-2}}$

The Peer Review Process

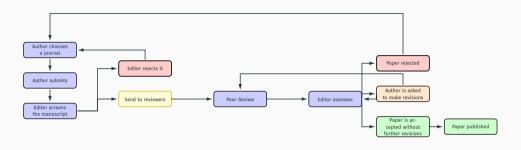
Peer Review: Building Solid Scientific Foundations

- Ensures that claims are supported by evidence.
- Detects errors or missing details.
- Facilitates reproducibility and reliability.
- Strengthens the credibility of science.

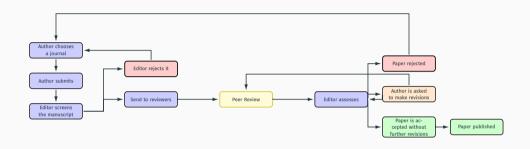
 $Source\ image:\ https://alisonbullinquirylearning.wordpress.com/2014/09/03/peer-feedback/$


Organization of a Scientific Journal

- Editors-in-chief set the journal's direction (there could be track editors below).
- Associate editors manage submissions and peer review.
- Reviewers provide evaluation and recommendations.
- Editorial decisions are based on peer reviews.

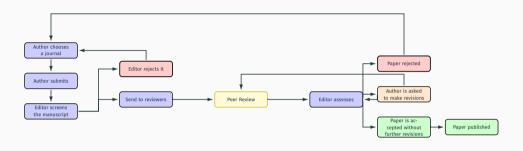

From Submission to Publication: Workflow

 Key steps include: submission, editorial screening, peer review, revisions, and final decision.

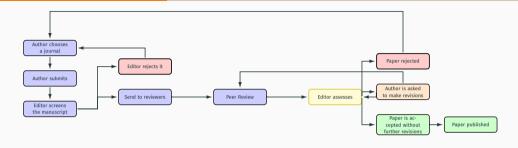

Source: Navigating peer Review, University of Aberdeen

Editor Assigns Reviewers

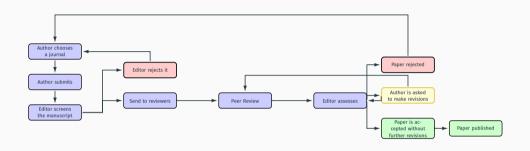
- After accepting the manuscript, the editor contacts reviewers.
- Typically, at least 2 reviewers per paper are assigned.
- Editors select reviewers with expertise in the topic or methods used.
- Reviewers can accept or decline, and are given a **few weeks** to complete the review.


Peer Review (1/2)

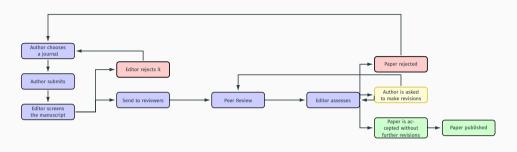
Reviewers evaluate:


- · Relevance and novelty of the research.
- · Structure, clarity, and readability.
- · Proper use of sources and methodology.

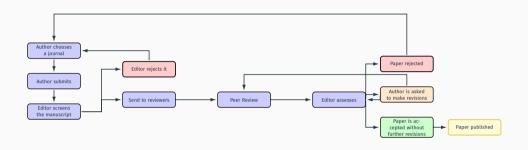
Types of Peer Review (2/2)


- Single-blind: reviewers know authors, authors don't know reviewers.
- **Double-blind**: neither authors nor reviewers know each other.
- Open review: identities of authors and reviewers are known (+ open reports, open participation), might be more and more present

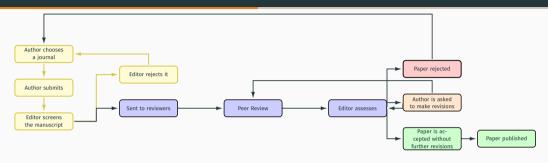
Editor Makes a Decision


- The editor considers the reviews and their own evaluation.
- Possible outcomes:
 - · Reject the manuscript.
 - Revise with major revisions.
 - · Revise with minor revisions.
 - · Accept with no revisions.

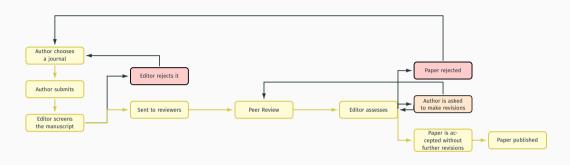
Author Revises the Manuscript (1/2)


- Authors revise based on reviewer comments.
- Major revisions require another round of review.
- Minor revisions are checked only by the editor (this depends on the journal).

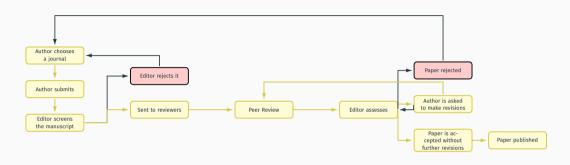
Author Revises the Manuscript (2/2)


- Carefully read all reviewer comments and editor feedback.
- Address each point clearly in your revised manuscript.
- Indicate changes in a response letter or highlighted manuscript.
- Maintain a "constructive" tone in your responses.

Publication!:)


- The manuscript is finalized and ready for publication.
- Duration of the whole cycle: 2–6 months typical, depends on the journal.
- The paper is edited, proofread, and then published.

From submission to Publication: Direct rejection path :(


- Manuscript may be rejected by the editor.
- Common reasons for rejection:
 - Topic unsuitable for the journal.
 - · Guidelines not followed.
 - Too similar to existing work.
- ⇒ Author revises and may submit to a different journal.

From submission to Publication: "Perfect" path:)

- Paper accepted without any revisions rare
- Usually, reviewers or editors suggest minor changes.
- Even small revisions improve clarity and quality.

From submission to Publication: "Standard" path:)

- Paper accepted after revisions.
- Often involves a cycle of major and/or minor revisions.
- Revisions improve clarity, completeness, and scientific rigor.

Reviewing a manuscript

- Read the entire paper before writing your review.
- **Topic:** Is it appropriate for the journal? Does it contribute new knowledge wrt the state of the art?
- Sources & Methodology: Are references relevant? Is the method suitable and well described?
- Content & Structure: Are arguments clear? Do title and abstract reflect content? Are figures/tables relevant? Do results support conclusions?

No need to correct all typos or spelling mistakes, mention them briefly.

Writing the Review

- Overview: How do you interpret the paper's points? What are its main strengths and weaknesses? How does it contribute to the field?
- Major comments: Issues affecting understanding of the paper. Be precise, cite examples and suggest improvements if possible.
- Minor comments: Confusing sentences, unclear figures, incorrect references. Specific feedback helps authors revise efficiently.

Keep a constructive and respectful tone.

Exercise: Peer Review Example

Example Extended Abstract (your turn!)

- Please go to the Moodle page and download the sample extended abstract (generated with LLM).
- Review this abstract.

A NOVEL HIGH-ORDER NUMERICAL SCHEME FOR FLUID DYNAMICS

Jane Doe1, John Smith2

¹Department of Computational Engineering, Example University, France

²Institute of Applied Mathematics, Another University, France

Abstract

We prouse a high-order compact finite difference scheme for the 2D incompressible Navier-Stokes equations with periodic boundary conditions. The method combines forth-order spatial discretization with second-order implicite time integration and a simplified treatment of the nonlinear convective term. Numerical tests show that the proposed scheme consistently achieves lower L₂ velocity errors than the standard FFD method, demonstrating superior accurey and robustness. These results indicates that our method control/rest necessities are superior accurate.

INTRODUCTION

Accurate and efficient numerical solutions of the incompressible Navier-Stokes equations are essential for a wide range of engineering accientific applications, including accordinanties simulations, environmental flows, and industrial process modellings [3]. Traditional finite difference methods, such as the Fast Finite Difference (FFD) scheme, are widely used due to their simplicity and computational efficiency.

High-order compact schemes has been proposed to improve spatial accuracy while retaining a compact tensist [1, 2]. Some other approachs, like turbulence modeling in complex geometries, has also been investigated in related contexts [4]. Anyway, we propose a fourth-order compact finite difference scheme in space, combined with a second-order implicite time integration, to solve the 2D incompressible Navier-Stokes equations under periodic boundary conditions. We first describe the numerical method, including the discretization and implementation details, then present the numerical results with error analyse for selected grid resolutions, and finally discuss the performance of the proposed scheme in comparisons to standard methods and highlights the main conclusions for the study.

NUMERICAL METHOD

Correction

- Syntax and grammar issues in the text
- Missing or incorrect citations
- Problems in text workflow or paragraph transitions
- Missing proof
- Conclusions not fully supported by the results

A NOVEL HIGH-ORDER NUMERICAL SCHEME FOR FLUID DYNAMICS

Jane Doe1, John Smith2

¹Department of Computational Engineering, Example University, France
²Institute of Applied Mathematics, Another University, France

Abstract

We propose a high-order compact finite lifereness, echeme for the 2D incompressible Navier-Stokes equations with periodic boundary conditions. The method combines forth-order spatial discretization with second-order implicite time integration and a simplified treatment of the nonlinear convective term. Numerical tests show that the proposed scheme consistently achieves lower L₂ velocity errors than the standard FFD method, demonstrating superior accurey and robustness. These results clearly includes that our method outperforms existing numerical agroading

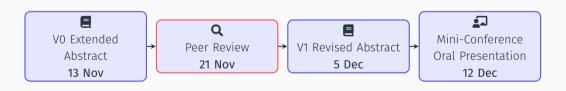
INTRODUCTION

Accurate and efficient numerical solutions of the incompressible Navier-Stokes equations are essential for a wide range of engineering and scientific applications, including aerodinamics similations, environmental flows, and industrial process modellings [3]. Traditional finite difference methods, such as the Fast Finite Difference (FFD) scheme, are widely used due to their simplicity and computational efficiency.

High-order compact schemes has been proposed to improve spatial accuracy while retaining a compact stemstill, 2.] Some other approachs, like turbulence modeling in complex geometries, has also been investigated in related contexts [4]. Anyway, we propose a fourth-order compact finite difference scheme in space, combined with a second-order implicite time integration, to solve the 2D incompressible Navier-Tookes equations under periodic boundary conditions. We first describe the numerical method, including the discretization and implementation details, then present the numerical results with error analyse for selected grid resolutions, and finally discuss the performance of the proposed scheme in comparisons to standard methods and highlights the main conclusions of the study.

NUMERICAL METHOD

Review comment of the Abstract


This paper presents a high-order compact finite-difference scheme for the 2D incompressible Navier–Stokes equations... While the approach shows promise, several issues should be addressed:

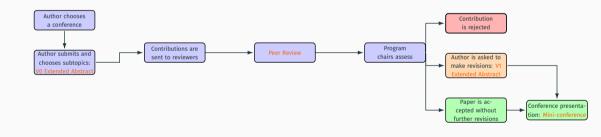
- The introduction contains multiple typos and grammatical errors (e.g., "propse" ...). Paragraph transitions are abrupt, especially between the discussion of FFD methods and high-order schemes.
- Some claims about high-order schemes and turbulence modeling are only partially supported by citations. Statements such as "superior accuracy and robustness" lack references to supporting literature.
- Equation (4) requires a derivation or additional explanation, as the simplification of the convective term is not clearly justified.
- □ The results rely on a single plot comparing the proposed method to FFD. Claims that "our method outperforms existing numerical approaches" are overgeneralized given the limited tests; a more extensive error analysis is recommended.

Peer Review in the UE Recherche

Workflow of the UE Recherche

- Modeled after a scientific conference.
- Timeline of the UE Recherche:

Participating to a Conference


- Conferences use a peer-review process similar to journals.
- They require shorter versions of papers typically abstracts, extended abstracts, or 2-page papers.
- They provide a venue for discussion, feedback, and visibility before journal publication.
- They encourage early sharing of results and networking within the research community.

Might change depending on the domain

From Submission to the Conference: Workflow

• Key steps include: submission, peer review, revisions, conference presentation.

Your Roles in the Process

- Authors (YOU):
 - ✓ Write a clear and structured extended abstract: done!
 - Respond to reviewers' comments in revision (second version of the abstract).
 - Present at the conference
- Reviewers (YOU):
 - Read carefully and critically.
 - Provide constructive feedback.
 - Remain respectful and objective.
- Program Chairs (US):
 - Assign submissions to reviewers (single-blind process here)
 - Make you Program Committee Members (NOW!)
 - ✓ Make acceptance/rejection decisions: all contributions are accepted here;)

Peer Review Guidelines using EasyChair

Introduction to EasyChair

EasyChair is the platform we will use for submitting and reviewing extended abstracts.

- Submit your extended abstract (V0) to the conference.
- Track the review process and see reviewer comments.
 - Groups of 2 will receive two reviews
- Respond to feedback in the revision (V1).
- Upload your final version.

EasyChair is widely used in conferences to manage submissions, reviews, and communication with authors and reviewers.

Who is reviewing whom: Topics of the mini-conference

Main Topics

- Deep Learning & Neural Networks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- Optimization & Stochastic Methods: 12, 13, 11, 14, 15, 1
- Computational Modeling: 16, 17

Application Domains

- □ Biomedical & Neuroscience: 5, 6, 16, 17, 4
- Environmental & Biological Systems: 2, 3, 4
- Physics & Engineering: 10, 15, 16, 17
- Cybersecurity & Multi-Agent Systems: 12, 13, 11
- Hardware / Embedded Systems: 1, 7, 8, 9

Structure of Your Review

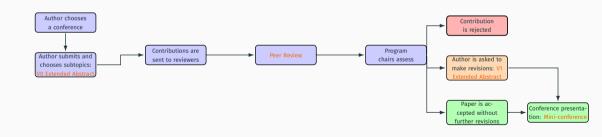
Your review should be short, about 200–300 words.

We ask that you include in your review:

- General comment: Summarize what the study is about.
- Strong points: Highlight what has been achieved.
- Weak points: Suggest what could be improved.
- Writing quality: Comment on clarity of plan, context, problem statement, methods, and discussion.

Please be respectful and constructive. The goal is to be critical and to help improving the abstract of your colleagues. You will be evaluated on this.

Additional Questions for Your Review


In addition, we will ask you:

- Do you think the paper has been written using LLMs?
 - · Not at all
 - · Yes, a bit but the usage of LLMs is reasonable
 - · Yes, a lot
 - Yes, completely
- Do you feel confident in your review?
 - · No, I don't feel comfortable with this topic and/or methods
 - Partly, I may be missing some concepts or elements of the state-of-the-art, but I got the main idea
 - \cdot Yes, I have the necessary background to understand and review this study
- Optional comment for editors: You can add a comment visible to the teaching team but not to the author of the extended abstract.

Summary and Next Steps

Summary

- Peer review = a collaborative process to improve research quality.
- □ In UE Recherche: a simulation of the academic workflow.
- Write a Review for Next Friday

Next Steps

- Work on your research topic
- Revise your abstract following the review(s)
- Present your work at the end of UE conference

