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A B S T R A C T

A detailed atomistic model of Calgon Co.’s bituminous coal-based activated carbon (BPL)

was developed using an adaptation of the Hybrid Reverse Monte Carlo method. The result-

ing model was a highly heterogeneous carbon structure that had features consistent with

experimental X-ray diffraction measurements. The microstructure of the model was char-

acterized and Grand Canonical Monte Carlo simulations were used to examine the adsorp-

tive properties of the model. These findings were compared with experimental

measurements taken on samples of the real material. The results showed that the model

provides a realistic description of the BPL’s microstructure and accurately predicts adsorp-

tive behavior over a wide range of state conditions.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Activated carbons are among the most widely used industrial

materials. Due to their low cost of production and high

adsorption capacity, they have found use in a number appli-

cations such as gas and electrolyte storage, gas and fluid puri-

fication, and as catalysts and catalyst supports [1–4].

Activated carbons are typically synthesized from organic car-

bonaceous precursors such as woods, coconut shells and

coals. By judicious choice of the precursor materials and pro-

cessing conditions, they can be synthesized with a wide range

of features characterized by pore size distribution (PSD), spe-

cific surface area (SSA) and chemical composition. As a result,

a considerable amount of effort has been expended into char-

acterizing activated carbons in order to understand how spe-

cific structural and chemical features influence their

performance (e.g. [5–7]). Despite these efforts, their highly

amorphous nature has limited the ability of traditional struc-

tural characterization techniques, such as X-ray diffraction
er Ltd. All rights reserved
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(XRD), to fully resolve the detailed microstructure of these

materials. As a result, a fundamental understanding of how

their structural features give rise to their adsorptive proper-

ties remains elusive and thus the ability to develop activated

carbons with optimal properties for specific applications has

not yet been achieved.

Molecular simulation methods have been widely used

to study the adsorptive properties of porous materials (e.g.

[8–11]). The primary limitation in applying these methods to

study activated carbons has been the lack of realistic struc-

tural models. The most frequently used approach has been

to use highly simplified geometric models such as infinite slit

or cylindrical shaped pores to model the porous structures in

activated carbons [12,13]. While these models account for

variations in pore size, they fail to adequately capture sources

of heterogeneity such as pore connectivity and irregular pore

morphologies. More detailed structural models have been

developed by so-called reconstruction methods that generate

atomistic models to match key experimental measurements,
.
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such as the pore size distribution or radial distribution func-

tion (RDF) [14,15]. Structural models produced by reconstruc-

tion methods incorporate pore connectivity and irregular pore

shapes, but without additional constraints these methods do

not provide an accurate description of the carbon microstruc-

ture and usually produce models that contain unrealistic

structural features such as highly strained three- and four-

member carbon rings.

Recent advances in the understanding of covalent bonding

in solids from experimental studies and first-principles quan-

tum mechanical calculations have allowed for the develop-

ment of reactive intermolecular potentials that accurately

describe the energetics and geometry of bonding in hydrocar-

bon systems [16,17]. Opletal et al. were the first to use one of

these potentials in conjunction with a reconstruction meth-

od. The resulting simulation technique, known as Hybrid Re-

verse Monte Carlo (HRMC), was used to generate a model for

an amorphous carbon that both reproduced the targeted

structural function and had a physically reasonable micro-

structure [18]. This method was developed further by Jain

et al. and was used to generate structural models for three

microporous carbons derived from saccharose [19]. Their

models reproduced the experimental RDFs with a high degree

of accuracy and had a very low occurrence of highly strained

bonded structures. Subsequently, the HRMC method has also

been used successfully to develop models for activated car-

bon fiber [20], a wood-derived ultra-microporous activated

carbon and a non-activated carbon derived from crystalline

TiC [21].

Our goal is to develop a structural model for Calgon’s bitu-

minous coal-based carbon, BPL. BPL is a widely used indus-

trial adsorbent that has shown promise in environmental

applications, particularly as an adsorbent for toxic and odor-

ous industrial chemicals [6,22–26]. There have been many ap-

proaches taken to model BPL including those based on

classical thermodynamic theories [27,28] and molecular sim-

ulation and statistical mechanics [29–31]. Segarra and Glandt

[29] and Liu and Monson [30,31] have both proposed platelet

models for BPL, in which the carbon framework of BPL is

modeled as a collection of randomly positioned and oriented

graphite platelets, consisting of either one or two featureless,

planar graphene sheets. This approach has been very suc-

cessful in reproducing experimental adsorption data over a

wide range of state conditions for a number of adsorbates,

including methane, ethane and their mixtures, and water.

While the platelet models go well beyond the slit-pore

approximation by introducing sources of heterogeneity such

as pore connectivity and variable pore morphologies, they

do not provide the atomistic-level detail needed to allow for

local structural deviations from that of graphite, such as cur-

vature of the basal graphite sheets, deviations in the carbon

bonding chemistry or a realistic description of the polydisper-

sity of graphene fragment sizes found in BPL. As a result, the

ability of these models to accurately predict the structural

features of BPL and their impact on the adsorption properties

is limited.

The structural model proposed here is a fully atomistic

model for BPL that was constructed using the HRMC method.

The model addresses the shortcomings of the slit-pore and

platelet models by including key sources of heterogeneity
such as variability in the pore size, pore interconnectivity,

irregular pore geometries and deviations in the local micro-

structure from that of crystalline graphene, while accurately

reproducing the experimental carbon density profile of the

real material. We examine the structural features of the pro-

posed model in considerable detail and calculate geometric

properties such as the carbon ring size distribution, bond an-

gle distributions and ring connectivity [32] and illustrate that

these features are very different from those found in crystal-

line graphite. In addition, the geometric pore size distribution

and surface area are calculated using exact Monte Carlo inte-

gration techniques. The adsorptive properties of the model

are also examined for several simple fluids and compared di-

rectly with experimental measurements.
2. Experimental methods

2.1. X-ray diffraction

BPL (12 · 30 mesh) granular activated carbon was purchased

from Calgon Carbon Co. (lot No. 0325). A powdered sample

was prepared by grinding and sieving the BPL to remove par-

ticles larger than 45 lm. XRD measurements were taken on

the powdered sample using the Advanced Photon Source at

Argonne National Laboratory with a Moly Ka source at a

wavelength of 0:284812 Å in the 2h range of 2–68� with a

0.01� step size. Background contributions from the sample

holder were subtracted and standard corrections for adsorp-

tion and polarization were made. The resulting intensities

were normalized using a method based on the principle of

the conservation of intensity described in detail by Franklin

[33]. After normalization and subtraction of the incoherent

contribution, the structure factor, SðqÞ, was obtained. The

RDF was then calculated from the structure factor using the

MCGOFR method of Soper [34], which uses a reverse Monte

Carlo procedure to estimate the RDF such that the presence

of spurious oscillations and other truncation errors that result

from the finite range of q are minimized.

2.2. Adsorption measurements

Volumetric adsorption measurements were taken on BPL

samples using a Quantachrome Autosorb 1C analyzer to mea-

sure nitrogen adsorption and desorption isotherms at 77 K.

The nitrogen isotherms were used to estimate the differential

PSD for BPL using the quenched-solid non-local fluid density

functional theory (QSDFT) of Ravikovitch and Neimark [35]

implemented in the Quantachrome data reduction and anal-

ysis software, ASWin ver. 1.55. While this implementation of

non-local density functional theory still assumes a simple

slit-pore geometry in calculating the properties of the carbon

sample, it treats the solid carbon phase as a quenched com-

ponent, allowing for a heterogeneous carbon density profile

to be incorporated into the slit-pore model. Thus additional

sources of heterogeneity in the microstructure that are not

explicitly taken into account may be incorporated into the

slit-pore model through an effective surface roughness,

resulting in improved estimates of the PSD for highly hetero-

geneous materials such as activated carbons. The linear
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region of the nitrogen adsorption isotherm was also used to

estimate the SSA of BPL using Brunauer–Emmett–Teller

(BET) analysis [36].
3. Theoretical methods

3.1. The Hybrid Reverse Monte Carlo method

The HRMC method is a stochastic simulation technique that

is used to efficiently sample configurational phase space

based upon an energy functional, U , which describes the po-

tential energy of the system in terms of atomic coordinates,

molecular orientations and other configurational degrees-of-

freedom, while simultaneously minimizing the mean squared

error between the model and experimental RDFs. For simple

systems where the bonding structure and energy functional

are well known, the global energy minimum corresponds to

a thermodynamically stable and unique atomic configuration.

However, for more complex systems, such as covalently-

bonded solids, energy functionals that can accurately de-

scribe correlations between atoms beyond a few angstroms

have not been developed. Thus, a biasing function is used to

account for long-range correlations in the potential energy,

which dictates the micro- and meso-scopic structures. In

our simulations, we have used the total residual error cost

function, v2, which is calculated between the simulated and

experimentally measured RDFs, gðrÞ,

v2 ¼
Xn

i¼1

ðgsimðriÞ � gexpðriÞÞ2: ð1Þ

The sampling is conducted with the total number of particles,

N , and the total volume of the system, V , held constant. In

addition, the ratio of a temperature-like parameter, T , and a

weighting factor, w, that is related to the total error in the

experimental RDF, is also held constant. The Metropolis

acceptance probability in the HRMC procedure for transition-

ing from one configuration to another is a function of both the

change in configurational energy and residual error,

Paccept ¼min½1; expð�ðDUþwDv2Þ=TÞ�: ð2Þ

Further details of the HRMC method can be found elsewhere

[19,37].
3.2. Generation of the model

The HRMC method was used to generate a structural model

for BPL. Along with the RDF, the mean carbon density on

the length scale of the simulation cell must also be known

to generate an initial starting configuration. This, however,

is a nontrivial quantity to determine directly from experiment

as the measured density varies considerably between the

microscopic and macroscopic length scales. For example,

the apparent density for BPL, or packed particle density, ranges

from 0.4 to 0:5 g=cm3 depending on the particle size. The par-

ticle density, as measured by mercury displacement, gives an

estimate of the density that includes the void space contribu-

tion due to micropores and small mesopores and has been re-

ported to be 0:8 g=cm3 for BPL. And finally, the true density,

which excludes void volumes that are large enough to be
accessible to helium, is 2:23 g=cm3, or roughly that of crystal-

line graphite [24].

Since the HRMC method is best suited for microporous

systems, we estimated the carbon density using the approach

taken by Nguyen et al. [20], in which the density, qc, is

qc �
XC

1
qHe
þ VMP

; ð3Þ

where X c is the weight percent of carbon in BPL, qHe is the true

density as measured by helium displacement and V MP is the

micropore volume. This method was chosen because it pro-

vides an estimate of the density that includes only the void

space of the micropores. The micropore volume was esti-

mated to be 0:44 cm3=g by integrating over the PSD that was

calculated using QSDFT and the value for the true density

was taken from Ref. [24]. Since BPL is synthesized from bitu-

minous coal, it contains a number of heteroatoms such as N,

O, H, S and Cl. The composition of the BPL may also vary from

batch to batch depending on the composition of the coal pre-

cursor. We chose X c such that the micropore volume of our fi-

nal structure matched our estimate of the micropore volume

obtained from the PSD, where the method for calculating the

model’s micropore volume is discussed in Section 3.4. There-

fore using X c ¼ 0:935 and V MP ¼ 0:44 cm3=g in Eq. (3), the car-

bon density used to construct the model was 1:05 g=cm3.

Simulations were initiated from a randomly-generated ini-

tial configuration of 1420 carbon atoms in a periodic cubic

unit cell, 30 Å in length. Beyond 15 Å, oscillations in the exper-

imental RDF were not observed, indicating it did not contain

significant structural information. Therefore, the length of

the unit cell was chosen so that a RDF cutoff of 15 Å could

be used while keeping the minimum image convention [38].

An annealing procedure was also implemented by varying w

and T in such a way that their ratio remained constant during

the simulation. This was done to ensure that configurational

space was adequately sampled during the simulation and

that the final structural model would not be heavily influ-

enced by the choice of our initial starting configuration. The

HRMC method was used to perform 104 blocks of 3:5� 104

Monte Carlo steps. The ratio w=T and annealing rate were

chosen such that the final simulated and experimental RDF

were in good agreement and no highly strained small carbon

rings structures were observed. To calculate the configura-

tional energy in our simulations and to capture bond breaking

and formation, we used the Adaptive Intermolecular Reactive

Empirical Bond Order (AIRBEO) potential of Stuart et al. [16].

3.3. Structural characterization

One of the key advantages of building structural models for

activated carbons is that their microstructure features can

be examined by exact geometric methods. Using the method

of Franzblau [39], we identified all of the carbon rings in our

model structure assuming minimum and maximum carbon

bonding distances of 1:2 Å and 1:8 Å, respectively. Once the

individual rings were identified, ring connectivity analysis

was performed using the method of Jain and Gubbins [32],

which allowed us to identify graphene microcrystals in our

model. In defining the graphene microcrystals, we accounted

for deviations from an ideal six-member ring crystal structure
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and included defects such as five- and seven-member carbon

rings and non-planar hexagonal rings. In our calculations, a

microcrystal was then defined as any continuous segment

containing only five-, six- and seven-member carbon rings.

The total geometric pore size distribution was calculated

using the method of Gelb and Gubbins [9], which uses a

spherical probe to determine the largest sphere that may be

inserted at a given point in the simulation cell without over-

lapping the carbon structure. The pore width is then defined

as the diameter of this largest sphere. We sampled approxi-

mately 106 points using an evenly spaced grid to discretize

the space of the simulation cell. Overlap was defined to occur

if the probe sphere came within the Lennard-Jones diameter,

3:36 Å, of the geometric center of a carbon atom. The Con-

nolly surface area of the model structure was calculated using

the chord length distribution method described in Ref. [40].

This measure of the surface area is the area that would be ob-

tained if a spherical probe were rolled over the carbon struc-

ture. Therefore, any region of the structure accessible to the

surface of the probe molecule contributes to the total surface

area. For our calculations, we used a sphere of 3:75 Å in diam-

eter, which is the Lennard-Jones diameter of the nitrogen

model used in this study.

3.4. Simulated adsorption isotherms

Grand Canonical Monte Carlo (GCMC) simulations [41] were

used to calculate simulated adsorption isotherms on our

model structure. The adsorbate molecules and carbon atoms

were modeled as single-site Lennard-Jones spheres. The

adsorbate collision diameters and well-depths, as well as

the adsorbate-carbon collision diameters were taken from

Nguyen et al. [20]. The adsorbate-carbon well-depths, esf , were

scaled from the parameters for graphite, esf
G ,

esf ¼ aesf
G ; ð4Þ

by a constant scaling factor, a. The scaling factor is used to

correct the adsorbate-carbon parameters originally developed

by Steele for interaction of adsorbates with graphitized car-

bon black [42]. Using quantum mechanical calculations, Klau-

da et al. have recently shown that the adsorbate-carbon

parameters for nitrogen and oxygen interacting with curved

carbon surfaces deviate significantly from the original Steele

parameters due to the changes in the carbon electron cloud

distribution [43]. In practice, the scaling factor is used to ac-

count for the changes in the dispersion energy due to surface

curvature as well as other sources of heterogeneity not explic-

itly considered, such as the presence of heteroatoms and un-

known systematic sources of error in the measured density

profile. A scaling factor of 1.10 was found to give the best fit

between the simulated and experimental adsorption iso-

therms for nitrogen. It is interesting to note that the scaling

factor was very close to the scaling factor of 1.134 used by

Nguyen et al. for adsorption onto activated carbon fiber [20].

The same scaling factor was then used to scale the well-

depths of helium, carbon dioxide and methane. A summary

of the parameters used in this study is presented in Table 1.

To lessen computational expense, interactions between the

adsorbate molecules and the carbon surface were calculated

at approximately 5:4� 106 evenly spaced grid points prior to
the start of the simulation. These values were tabulated in a

look-up table that was accessed during the simulation run-

time, where a linear interpolation scheme was used to obtain

the value of the potential energy between grid points. All

interactions were truncated after 15 Å. At each state point

along the isotherm, the simulations were equilibrated using

a minimum of 5� 106 Monte Carlo steps. Statistics were then

collected over a minimum of 10� 106 additional Monte Carlo

steps. Each subsequent simulation was initialized using the

final configuration from the previous one.

For nitrogen at 77 K, the bulk phase in equilibrium with the

adsorbed nitrogen was assumed to be an ideal gas and the

difference between the absolute and excess amounts ad-

sorbed were assumed to be negligible. For carbon dioxide

and methane, the relationship between the chemical poten-

tial and bulk pressure was calculated using the Lennard-Jones

equation of state [44]. The absolute and excess amounts ad-

sorbed, n, were related by,

nexcess ¼ nabsolute � VPqbulk; ð5Þ

where V P is the total pore volume and qbulk is the bulk density

of the adsorbate under identical state conditions. Following

the prescription of Myers and Monson [45], the pore volume

was estimated by helium adsorption at 298 K. To save compu-

tational cost, the bulk densities were estimated using the Len-

nard-Jones equation of state.

Differential enthalpies of adsorption, qd , were calculated

from the fluctuations in the number of adsorbate molecules

in the simulation cell, N , and the configurational energy, U ;

during the GCMC simulations,

qd ¼ RT� hUNi � hUihNi
hN2i � hNi2

; ð6Þ

where the brackets indicate that the values are ensemble

averages [46].

4. Results and discussion

4.1. Details of the microstructure

Using the HRMC method, a model structure for BPL was gen-

erated. As illustrated in Fig. 1, the RDF of the model was in

very good agreement with the experimental RDF, with an

average residual error of 0.01 per data point.

Both RDFs had relatively sharp first and second peaks, cor-

responding to first and second bonding neighbors, which

indicated that there was some degree of local ordering. How-

ever, the intensity of subsequent peaks decayed rapidly until

no distinguishable ordering was observed beyond approxi-

mately 10 Å. There were also no observable features in the

range of 3:3–3:5 Å in the RDFs, which would correspond to

the interlayer spacing in graphite. This suggested that neither

the model nor the BPL sample contained a significant amount

of stacked graphene microcrystals.

The average first and second neighbor distances, l1 and l2,

respectively, were obtained from the experimental RDF by fit-

ting the first two peaks to Gaussian functions. For the model,

these distances were computed exactly from the structure.

From both RDFs, we also computed the neighbor distribution

functions, nðrÞ,



Fig. 1 – Radial distribution functions for BPL (from XRD) and

the HRMC-generated model.

Table 1 – Lennard-Jones parameters used in this study.

Species Fluid–fluid
diameter, r ðÅÞ

Fluid–fluid
well-depth, e=kB (K)

Fluid–carbon
diameter, r ðÅÞ

Scaled fluid–carbon
well-depth, e=kB (K)

Helium 2.557 10.22 2.980 16.50

Nitrogen 3.750 95.20 3.360 67.54

Methane 3.751 148.00 3.576 70.74

Carbon-dioxide 3.648 246.15 3.400 89.44
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nðrÞ ¼
Z 1

0

4pqcr
2gðrÞdr; ð7Þ

which gave the average number of carbon atoms in the first

and second coordination shells n1 and n2, respectively. We also

used the model to calculate carbon bond angle, h, and torsion,

or dihedral, angle, /, distributions. These quantities were

compared with those calculated from an ideal graphite crystal

constructed using lattice parameters that were taken from

Ref. [47]. The findings from these calculations are summa-

rized in Table 2.

While the distances for the first and second neighbors

were consistent with those of graphite, the first neighbor

coordination numbers for both BPL and the model were sig-

nificantly less. The second neighbor coordination numbers

were slightly higher than that of graphite. This was due to

the fact that the second neighbors can only occur in the plane

of the same graphene sheet in graphite, while for amorphous

carbons, second neighbors are not confined to a plane and
Table 2 – Bonding characteristics and ring statistics. Where ap
mean ± standard deviation. Blank cells indicate that the prope

Substance Neighbor
distances, l1; l2 ðÅÞ

Coordination #
n1; n2 (atoms)

Graphite 1.42, 2.46 3.0, 6.0

BPL 1.44 ± 0.19, 2.49 ± 0.24 2.89, 6.24

Model 1.45 ± 0.13, 2.53 ± 0.21 2.91, 6.34
may occur anywhere in a spherical cutoff radius from the

central atom, with or without being bonded to a first

neighbor.

In addition to the deviations in the coordination numbers,

the large variance in the bond and torsion angles indicated

that a wide variety of local bonding and ring structures were

present. For the model, the variance in the bond angle encom-

passed both 108� and 128.57�, which corresponded to the an-

gles in ideal planar five- and seven-member carbon rings,

respectively, and indicated that these structures may have

been present. There were also torsion angles that significantly

deviated from 180�, i.e., planar graphene. Thus, these features

illustrated that even at the most local level for the BPL sample

and the HRMC model, the structure was highly heterogeneous

and deviated significantly from that of crystalline graphite.

This was confirmed by examining a snapshot of the final

structure, shown in Fig. 2.

To examine the model structure in greater detail and con-

firm the presence of five- and seven-member rings, we com-

puted the ring statistics for the HRMC model. The model

structure contained a significant proportion of five-, six- and

seven-member rings as well as non-planar forms of these

structures, as was expected from the analysis of the RDF

and bond angles. The distribution of ring sizes is presented

in Table 2. It is also important to note that there was a com-

plete absence of three- and four-member ring structures.

Therefore, the HRMC method was effective in eliminating

these highly strained ring structures by incorporating ener-

getic constraints into the reconstructive procedure. We also

performed ring connectivity analysis to identify any larger

structural features such as graphene microcrystals. While

there were a number of graphene microcrystals present in

the structure, the average segment consisted of only 18.7 car-

bon atoms, with a large standard deviation of 9.6 atoms. Sev-

eral representative graphene microcrystals are illustrated in

Fig. 2. As was also observed from the snapshot, the microcrys-

tals were generally highly curved and consisted of mostly

five- and six-member carbon rings, with no more than 44

carbon atoms present in the largest microcrystal. The small

size of the segments and the fact that only 25% of the total
propriate, values are presented in the form of
rty could not be directly calculated from the available data.

s, Bond and torsion
angles, h;/ (�)

Ring statistics
5,6,7-member (%)

120.0, 180.0 0.0, 100.0, 0.0

– –

119.1 ± 23.3, 88.8 ± 50.4 12.4, 53.6, 34.0



Fig. 2 – (Left) a molecular snapshot of the model for BPL illustrates the highly amorphous nature of the material. Spheres and

cylinders are carbon atoms and carbon–carbon bonds, respectively. (Right) five representative graphene microcrystals

identified in the BPL model using ring connectivity analysis. Their respective locations can be directly mapped onto the larger

structure on the left by superimposing the unit cells.

Fig. 3 – The pore size distribution for the BPL sample

estimated using QSDFT and the geometric and QSDFT

distributions for the HRMC-generated model. The geometric

PSD shows small pores (< 2:5 Å) that are inaccessible to

nearly all adsorbate molecules.
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number of carbon atoms in the system formed microcrystals

showed that the microstructure was highly fragmented and

that there was not a significant amount of ordering between

carbon ring structures. The remaining carbon atoms that

were not part of the microcrystals were found to be in ring

structures and small chains that connected carbon rings

and graphene sheets.

4.2. Pore size distribution and specific surface area

The PSD and SSA are among the most widely used properties

to characterize the structure of porous materials, in part, be-

cause they can be estimated from adsorption isotherms and

can be used to quantitatively compare different adsorbents.

We calculated the total geometric PSD of the HRMC model.

The comparison between the model PSDs and the QSDFT esti-

mate of the PSD for BPL using experimental nitrogen adsorp-

tion data at 77 K are shown in Fig. 3.

In comparing the PSDs, it is important to note that the PSD

obtained from the QSDFT analysis of experimental adsorption

data is an estimate of the geometric PSD for BPL that is influ-

enced by the specific nature of the adsorbate–adsorbate and

adsorbate–adsorbent interactions, while the PSD for the model

is simply based on the geometric considerations. Moreover, as

He and Seaton [48] have recently demonstrated, estimates of

the PSD obtained from the slit-pore interpretation of adsorp-

tion isotherms, for BPL in particular, vary widely depending

on the details of the implementation. In order to provide a more

direct comparison with the experimental estimate, we also

used QSDFT to estimate the PSD of the HRMC model by analyz-

ing simulated nitrogen adsorption data at 77 K (Fig. 4).

The experimental QSDFT estimate of the PSD for BPL had a

wide range of pore sizes, with approximately 75% of the total

pore volume distributed in pores less than 20 Å in diameter.

The remaining fraction of the pore volume was a result of

mesopores present in the sample. These regions of the PSD
were not shown for the sake of clarity in comparing with

the model’s PSD. As evident from Fig. 3, both the geometric

and QSDFT PSDs for the model structure were in very good

agreement despite the underlying independent slit-pore

assumption used in the QSDFT approach. Both PSDs for the

model structure were much narrower than the experimental

PSD, with a maximum pore size of only 12 Å. Thus, it was

clear that the model did not accurately capture larger porous

structures that are present in the real material. This discrep-

ancy was a result of the fact that the RDF did not contain a

sufficient amount of structural information to reconstruct

these larger pores. This was consistent with the previous

observation that the RDF determined from XRD contained al-

most no discernable features beyond 10 Å. This demonstrated



Fig. 4 – Simulated and experimental nitrogen adsorption

isotherms for the HRMC model and the BPL sample,

respectively.
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a general limitation of the HRMC method that has not been

previously addressed, namely that the RDF only describes

fluctuations in the carbon density on short length scales

and any reconstructive procedure solely based on this func-

tion will be unable to capture larger structural features. How-

ever, as we show in subsequent sections, the HRMC model

was still able to accurately predict adsorption isotherms un-

der the state conditions where small pores are the dominant

structural features in determining the adsorptive properties

of the material.

The SSA of the BPL sample and the model were also exam-

ined. The BET interpretation of the nitrogen adsorption data

estimated the surface area for the BPL sample to be

1009 m2=g, while the Connolly surface area for the model

was 1027 m2=g. The classical BET approach assumes that

adsorbate molecules adsorb onto an energetically homoge-

nous surface. This is clearly not the case for highly heteroge-

neous materials such as microporous carbons. Coasne et al.

[49] and Gelb and Gubbins [40] have shown that the agree-

ment between the Connolly and BET surface areas is depen-

dent on pore size, pore geometry and the characteristics of

the adsorbate molecule. They showed that the two measures

of surface area typically diverge for highly confined porous

systems, due to energetic heterogeneities in the surface that

arise from the curvature. Thus it is unlikely that the excep-

tional agreement between Connolly surface area for the

HRMC model and the BET area for BPL can be generalized to

other microporous systems.

4.3. Adsorption equilibrium

Although comparing structural features of the BPL sample

and the model can be used to assess the validity of the model,

it is essential to also compare the adsorptive properties in or-

der to gain insight into the interplay between the structural

and phenomenological properties. Using GCMC simulations

and simple spherical Lennard-Jones representations for nitro-

gen, we calculated the nitrogen adsorption isotherm at 77 K

for the model of BPL. The results from the simulations are

compared with the experimental isotherm in Fig. 4.
As evident from Fig. 4, both the simulated and experimen-

tal isotherms appeared to be Type I isotherms as defined by

the IUPAC classification system, and exhibited monotonic

exponential curvature (linear on the log-scale of Fig. 4). This

type of behavior is characteristic of predominately micropo-

rous materials and was consistent with the previous analysis

of the PSDs. Both isotherms also showed that a significant

amount of adsorption took place in the low pressure region,

where 10�5 < P=P o < 10�2. The micropores in the material pro-

vided a highly confined environment, in which the adsor-

bates’ exposure to the carbon surface was maximized. Thus,

adsorption into the micropores was most energetically favor-

able and dictated the features of the isotherms in the low

pressure regime. In this region, the simulated and experimen-

tal isotherms were also in excellent agreement. However, for

higher relative pressures, the simulated isotherm plateaued,

while the adsorbed amount for the experimental isotherm

continued to increase. The discrepancy at higher relative

pressures occurs because only the microporosity of the BPL

sample was captured in the model. Therefore the model

reached a maximum in its adsorption capacity when the

micropores became fully filled with nitrogen, while the exper-

imental isotherm continued to increase because of the pres-

ence of mesopores, allowing for adsorption to continue once

the micropores had reached their full capacity. This interpre-

tation was consistent with the observation that the filling

pressure for slit-pore widths corresponding to small mesop-

ores occurs at P=P o � 10�2 [50].

We also used the model to study adsorption under high

pressure conditions for carbon dioxide and methane. For

comparison with experimental data, we turned to a previous

experimental study by Reich et al. [51] in which they collected

adsorption data for carbon dioxide and methane for bulk

pressures up to 3:7 MPa. Isotherms were calculated for carbon

dioxide and methane at 212:7 K, 260:2 K and 301:4 K. The re-

sults of these calculations and the experimental data from

Reich et al. are presented in Figs. 5 and 6, for carbon dioxide

and methane, respectively.

As was the case for nitrogen, the isotherms for carbon diox-

ide and methane appear to be Type I isotherms. For carbon

dioxide the simulated isotherms slightly underestimated

and overestimated the experimental results at low and high

pressures, respectively. Since this trend occurred at all three

temperatures, it indicated that both the interaction parame-

ters for carbon dioxide–carbon dioxide and carbon dioxide–

carbon may have needed additional modification to account

for the anisotropic nature of the carbon dioxide. The HRMC

model gave somewhat better results for the three methane

adsorption isotherms. The predicted isotherms gave very good

agreement at all three temperatures examined, with near per-

fect agreement in the low pressure regime of the isotherm.

To get a more detailed description of the adsorption ener-

getics and potential effects of local chemical heterogeneities,

we calculated the differential enthalpies of adsorption for the

BPL sample and the HRMC model. The differential enthalpies

of adsorption were calculated from the experimental iso-

therms using the following thermodynamic relationship,

qd ¼ �R
@ ln P
@ð1=TÞ

� �����
n

; ð8Þ



Fig. 7 – Differential enthalpies of adsorption for methane.

Filled symbols are estimates from experimental

measurements and unfilled symbols are predictions of the

HRMC model.

Fig. 6 – Methane adsorption isotherms at 212:7 K (squares),

260:2 K (triangles) and 301:4 K (circles) for the BPL sample

and the HRMC model. Filled symbols are experimental data

taken from Reich et al., dashed lines are Toth fits (see Eq. (9))

to the experimental data and unfilled symbols are

predictions of the model.

Fig. 5 – Carbon dioxide adsorption isotherms at 212:7 K

(squares), 260:2 K (triangles) and 301:4 K (circles) for the BPL

sample and the HRMC model. Filled symbols with lines are

the experimental data taken from Reich et al. and unfilled

symbols are predictions of the model.
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where R is the gas constant. The derivative in Eq. (8) was eval-

uated by constructing a plot of ln P versus 1=T . Linear regres-

sion was then used to estimate the slopes of the adsorption

isosteres that were formed by connecting the points from

the three isotherms at constant loadings. To obtain the points

on the isotherms that corresponded to constant n, each of the

three methane isotherms was fit to a Toth equation [36],

n ¼ nLP

ðbþ PmÞ1=m
; ð9Þ

where P is the pressure and nL, b and m are adjustable param-

eters. The Toth fits for the isotherms are shown in Fig. 6

alongside the experimental and simulated isotherms. These

fits were used to find points at constant loading and calculate
the differential enthalpies of adsorption. The results for the

BPL sample and the HRMC model are shown in Fig. 7.

In addition to comparing with the experimental estimates

from Reich et al., we also show estimates of the differential

enthalpies of adsorption taken from He and Seaton [48],

which were obtained using a similar procedure.

The agreement between the experimental and model esti-

mates of qd was best in the low coverage, or low pressure re-

gion, where the methane–carbon interactions were dominant

in determining adsorptive behavior. The under prediction of

the model could have been attributed to error in estimating

the carbon density and the scaling method used to determine

the Lennard-Jones well-depth. It should be noted that the

estimates made using Eq. (8) are least accurate in the low

loading regime, due to the difficulty in accurately measuring

the equilibrium pressure at these conditions. Both qd plots

were fairly flat, with no sharp decreases, which suggested

that the energetic distribution of adsorption sites was fairly

homogenous. However, there were significant discrepancies

between the model and experimental results at higher load-

ings. This was due to the fact that at higher loadings the

methane–methane interactions were the dominant contribu-

tions to qd . The nature of these interactions is influenced

heavily by pore size and pore morphology. In the case of the

real material, once the micropores are completely layered

with adsorbed methane, adsorption begins in the larger

pores. At higher loadings, methane packs into these larger

pores which are more energetically favorable than the layer-

ing that occurs under low loading conditions due to the rela-

tive strengths of the methane–methane and methane–carbon

interactions. Consequently, the absence of these larger pores

forces layering to occur at higher loadings and resulted in a

decrease in simulated qd .

5. Conclusions

We have presented a molecular model for BPL that was devel-

oped using the HRMC method. The model had a carbon den-

sity profile that was consistent with experimental XRD
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measurements and a local bonding structure that was ener-

getically stable. In addition, the model was able to capture

many of the heterogeneous structural features of the real

material, such as highly non-crystalline carbon ring struc-

tures, graphene fragments, pore connectivity and irregular

pore morphologies. We demonstrated that the primary limi-

tation of the model was its lack of large micropores and mes-

opores, which was a direct consequence of limited

information contained within the experimental RDF. Never-

theless, we showed that the model could be used to accu-

rately predict the adsorptive properties of the real material

at low to moderate loadings for simple adsorbates such as

nitrogen, carbon dioxide and methane. The lack of mesopores

in the model did not have significant impact on the low pres-

sure and low loading regions of the adsorption isotherms. It

was only under higher pressures and higher loading condi-

tions, where the micropores were filled, that major discrepan-

cies between the experimental and simulated isotherms were

observed. However, a study of the differential enthalpies of

adsorption for methane provided a much more detailed

description of the microstructure and the absence of mesop-

ores was evident even under moderate loading conditions.
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