# Using Materials Studio to Prepare and Run MD Simulations and Analyze the Results

#### **Outline**

- > Drawing an organic molecule using the sketch tool.
- Building a crystal structure (kaolinite, pyrophillite, talc, quartz...)
- > Cleaving the crystal along a certain crystallographic plane to create a surface
- > Optimizing crystal structure (geometry optimization or energy minimization)
- Creating a water box of 64 H<sub>2</sub>O molecules and optimizing its structure
- Creating an aqueous solutions of (Na<sup>+</sup>, Cl<sup>-</sup>), or (Cs<sup>+</sup>, Cl<sup>-</sup>), (Ca<sup>2+</sup>, Cl<sup>-</sup>) or (Sr<sup>2+</sup>, Cl<sup>-</sup>) ... and using them to run MD and analyze the results
- Running MD Simulations
- Analyzing the MD results
- > Creating a slab of aqueous solution and adding it on the crystal surface
- > Running MD simulations for the interfacial clay-solution system and analyzing the results.

# **1. Drawing an organic molecule using the sketch tool**

#### > Open Materials Studio.

> Choose 'create a new project' and name your project.

| Welcome to Materials | Studio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| num                  | Use the controls below to create a new project or open an existing one.  Create a new project  Open an existing project:                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | D:\ngouana_VIRUS\Documents\Materials Studio Proj Browse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| http://              | Recent projects:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | D:\ngouancuments\Materials_Studio_Projects\Practicals.stp<br>D:\ngouanDocuments\Materials_Studio Projects\Untitled.stp<br>D:\ngouanuments\Materials_Studio Projects\Interfacial.stp<br>D:\ngouants\Materials_Studio Projects\Montmorillonite.stp<br>D:\ngouana_VIRUS\Documents\Materials_Studio Projects\NVT.stp<br>C:\Users\uments\Materials_Studio Projects\Interfacial.stp<br>D:\ngouana_VIRUS\Documents\Materials_Studio Projects\NPT.stp<br>D:\ngouana_VIRUS\Documents\Materials_Studio Projects\NPT.stp<br>D:\ngouan\Documents\Materials_Studio Projects\Dry-NPT.stp |
|                      | On start-up open the most recently used project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | OK Exit Aide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Right click on the name of your project -> New -> Folder Name it , e.g. 'NOM'

Now you can start sketching a model molecule of NOM (Natural Organic Matter) using the structure shown in the red frame of the file TNB-NOM-sein-est-1999-p1.pdf.

# 2. Creating a new MS project and building a crystal structure

- > Open Materials Studio.
- > Choose 'create a new project' and name your project.

| Welcome to Materials | Studio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| num                  | Use the controls below to create a new project or open an existing one.<br>Create a new project<br>Open an existing project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| http://              | D:\ngouana_VIRUS\Documents\Materials Studio Proj Browse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | D:\ngouancuments\Materials Studio Projects\Practicals.stp<br>D:\ngouanDocuments\Materials Studio Projects\Untitled.stp<br>D:\ngouanuments\Materials Studio Projects\Unterfacial.stp<br>D:\ngouants\Materials Studio Projects\Montmorillonite.stp<br>D:\ngouana_VIRUS\Documents\Materials Studio Projects\NVT.stp<br>C:\Users\uments\Materials Studio Projects\Interfacial.stp<br>D:\ngouana_VIRUS\Documents\Materials Studio Projects\Interfacial.stp<br>D:\ngouana_VIRUS\Documents\Materials Studio Projects\Interfacial.stp<br>D:\ngouana_VIRUS\Documents\Materials Studio Projects\NPT.stp<br>D:\ngouana_\Interfacials Studio Projects\Dry-NPT.stp |
| STUDIO               | On start-up open the most recently used project     OK Exit Aide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Right click on the name of your project -> New -> Folder Name it , e.g. 'crystal'

> Now you can start building the crystal or import (load) a template from a library.

# 2 (cont.). Building a crystal (kaolinite, pyrophillite, talc, quartz...)

You will be provided with unit cell atomic positions of some crystals. Choose one the structures and build the crystal.

Go to Build -> Crystals -> Build Crystal



Under Space group menu select the lowest symmetry group (P1), ignoring the symmetry group given by the atomic structure file. Then under Lattice Parameters enter the box lengths and angles.

#### Go to Build -> Add atoms

| Add Atoms           |                  | ×         |
|---------------------|------------------|-----------|
| Atoms Optic         | ons              |           |
| Element:            | 0 💌              |           |
| Name:               | 0 x 0,0          | 00        |
| Oxidation<br>State: | 0 • y: 0,0       | od        |
| Occupancy:          | 1,0 z: 0,0       | 00        |
| Temperature F       | actors           |           |
| None                | C Isotropic C An | isotropic |
|                     |                  |           |
|                     |                  |           |
|                     |                  |           |
|                     | Add              | Help      |

Input the coordinates for each atom to generate the crystal structure. Use the coordinates provided by the table "Co-ordinates for all atomic positions", but the identity of the atoms/elements (NoP) should be taken from the previous table in the same file.

# **3. Cleaving the crystal to create a surface**

Go to Build -> Surfaces -> Cleave Surface

| 🖬 Cleave Surface 🗾 💌                    |
|-----------------------------------------|
| Surface Box Surface Mesh Options        |
|                                         |
| Cleave plane (h k l): 0 0 -1            |
| Position                                |
| Top: -0.4589.591                        |
|                                         |
| Thickness: 0,976                        |
| Cleaving                                |
| Cleave rule: Default 💌                  |
| Cap bonds on Neither 🗸 face with H 💌    |
| , , , , , , , , , , , , , , , , , , , , |
|                                         |
| Cleave Help                             |

Go to Build -> Crystal -> Build Vacuum Slab...

| Ruild Vacuum Slab Crystal 🛛 🛛 💽 |  |  |  |  |
|---------------------------------|--|--|--|--|
| Vacuum Slab Options             |  |  |  |  |
| Vacuum orientation:             |  |  |  |  |
| Vacuum thickness: 80,2418 Å     |  |  |  |  |
| Crystal thickness: 99,4785 Å    |  |  |  |  |
| Slab position: 0,00 Å           |  |  |  |  |
|                                 |  |  |  |  |
| Build Cancel Help               |  |  |  |  |

- Define the cleavage plane (usually, it is (0 0 1))
- Define the thickness of the crystal

# Cleave

- Choose the vacuum orientation
- Define the vacuum thickness (to be filled with aqueous solution later)



> Add hydroxils (OH groups) to the dangling bonds, if necessary

# 4. Creating a water box of 64 H<sub>2</sub>O molecules

> Open Materials Studio.

> Choose 'create a new project' and name your project.

| Welcome to Materials | Studio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×      |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| num                  | Use the controls below to create a new project or open an existing one.<br>Create a new project<br>Open an existing project:                                                                                                                                                                                                                                                                                                                                                                                           |        |
|                      | D:\ngouana_VIRUS\Documents\Materials Studio Proj Browse                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a      |
| http://              | Recent projects:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
|                      | D:\ngouancuments\Materials.Studio.Projects\Practicals.stp<br>D:\ngouanDocuments\Materials.Studio Projects\Untitled.stp<br>D:\ngouanuments\Materials.Studio Projects\Interfacial.stp<br>D:\ngouants\Materials.Studio Projects\Montmorillonite.stp<br>D:\ngouana_VIRUS\Documents\Materials.Studio Projects\NVT.stp<br>D:\ngouana_VIRUS\Documents\Materials.Studio Projects\Interfacial.stp<br>D:\ngouana_VIRUS\Documents\Materials.Studio Projects\NPT.stp<br>D:\ngouana\Documents\Materials.Studio Projects\Dry-NPT.stp | p<br>p |
|                      | On start-up open the most recently used project                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                      | OK Exit Aide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |

Right click on the name of your project -> New -> Folder Name it 'Water'

> Now you can import (load) a template or build a model within the water folder.

#### Importing a template from the database



- Right click on the Water folder, then click on Import and go to /Structures/molecular-crystals/misc/ directory

- Chose the cubic ice structure (ice\_cub.msi)

#### - Change space group to P1



You now have a unit cell with 8 water molecules (go to Edit -> Atom Selection menu to check for this). In order to make a simulation cell of 64 water molecules, you need to multiply the unit cell by (2 x 2 x 2) in the x, y, and z directions. - Create a supercell: Build -> Symmetry -> Supercell. Set supercell range to 2 for A, B and C and then click on supercell.

- You need now to resize the supercell dimensions to have them all equal. To do this you must calculate the volume needed to fit 64 water molecules in order to target a density of about 1 g/cm<sup>3</sup>. Find out this volume and from it, determine a, b, and c dimensions.

- Then, right click in the dark area -> Lattice Parameters -> Parameters. Now enter the a, b, and c values you just determined above.



- Make sure fractional coordinates are kept fixed while doing this.

| Parameters Advance    | :ed]      |              |        |                       |
|-----------------------|-----------|--------------|--------|-----------------------|
| Cell Origin (Å):      | 0,000     | 0,000        | 0,000  |                       |
| Orientation standard: | C along 2 | Z, B in YZ p | lane 💌 | Re-orient to standard |

# Alternative method of creating a water box

- In the Water folder right click -> New -> 3D Atomistic Document. Rename it to water.xsd.
- Build a cubic crystal with a volume corresponding to 1 H<sub>2</sub>O molecule: Build -> Crystals -> Build Crystal.

- As you did before, find out the volume needed to fit 1 H2O molecule if the density is equal to  $1 \text{ g/cm}^3$ . From the volume deduce the box dimensions.

| engths (Å)                   | -                    | Sec. 10. 10. |        | -21 |
|------------------------------|----------------------|--------------|--------|-----|
| a: 10,000                    | ÷ b: 10,000          | ÷ c: [       | 10,000 |     |
| ngles (degrees)<br>at 90,000 | β: 90,000            | <br>         | 90,000 | }   |
| Sym                          | metry constraints: N | one          |        |     |
|                              |                      |              |        |     |

- Select 1 P1 under Space group menu and enter the box dimensions you just determined under the Lattice Parameters menu.

- Then, Build -> Add Atoms -> Atoms.

| Atoms   Upti        | ons         | t             |
|---------------------|-------------|---------------|
| lement              | U <u></u>   | I             |
| Name:               | 0           | a: 0,000      |
| Oxidation<br>State: |             | b: 0,000      |
| Occupancy:          | 1,0         | c: 0,000      |
| l'emperature f      | Factors     |               |
| None                | C Isotropic | C Anisotropic |
|                     |             |               |
|                     |             |               |
|                     |             |               |
|                     |             |               |

- Choose Element O and enter the appropriate oxidation state. Set occupancy to 1,0, and atomic positions (a, b, c) so that the O atom is located at the center of the box.

- Click on the created O atom. Then Modify -> H Adjust Hydrogen

- You now have a box of  $1 H_2O$  molecule.

Transform if into a box of 64 H<sub>2</sub>O molecules.

# 5. Minimizing the crystal energy

#### (this part can be performed after connection to the license server)

- Go to Module -> Forcite tools. Click on the icon and then select Calculation.
  - > Select a task

Select the Forcefield

Set Computer options

| Forcite Calculation                                                               | Forcite Calculation                                                                                                                                                                                                                                                        | Forcite Calculation                                                                                                                     |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Setup Energy Job Control<br>Task: Geometry Optimization V More<br>Quality: Fine V | Setup       Energy       Job Control         Forcefield:       clayff       More         Charges:       Forcefield assigned       More         Quality:       Fine       Summation method         Electrostatic:       Ewald       Van der Waals:         Ewald       More | Setup Energy Job Control<br>Gateway location: My Computer<br>Queue:<br>Job description: Automatic<br>Run in parallel on: 2 1 of 4 cores |
| Run Help                                                                          |                                                                                                                                                                                                                                                                            | Run Help                                                                                                                                |

Click on More... to set options for the Task (where and if necessary)

| - Run |
|-------|
|-------|

# 6. Minimizing the energy (while connected to the license server)

- Go to Module -> Forcite tools. Click on the icon and then select Calculation.

> Choose a task

Choose the Forcefield

> Set Computer options

| Forcite Calculation                                                      | Forcite Calculation                                                                                                                                                                                                                                                                                                       | Forcite Calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setup Energy Job Control<br>Task: Geometry Optimization<br>Quality: Fine | Setup       Energy       Job Control         Forcefield:       clayff       More         Charges:       Forcefield assigned       More         Quality:       Fine       More         Summation method       Electrostatic:       Ewald       Image: More         van der Waals:       Ewald       Image: More       More | Setup       Energy       Job Control         Gateway location:       My Computer       Image: Imag |
|                                                                          | Run Help                                                                                                                                                                                                                                                                                                                  | More<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Click on More... to set options for the Task (where and if necessary)

| - Run |  |
|-------|--|
|-------|--|

#### 7. Creating aqueous solutions out of a pure water simulation box

- Create a new folder and a new 3D Atomistic Document in this folder. Then, open the minimized structure of water and copy paste it in your newly created 3D Atomistic Document.

- Select one O atom. Then go to Modify -> Modify Element -> Periodic Table and choose the element (Cs, Ca, Cl, Na, Li...) you want to replace with. Delete the two H atoms bonded to this new element.

- Repeat the procedure to add more elements of the same types.

- Remember that the elements you are adding are ions, double check that you have added an equal amount of positive and negative charge by your modifications in order to keep the total system neutral

- Minimize the energy of your system

# 8. Running MD Simulations (while connected to the license server)

- Go to Module -> Forcite tools. Click on the icon and then select Calculation.
  - Choose a task

| Setup   Er<br>Task:<br>Quality:<br>Restart<br>Restart | ergy Job Control | E d to cui | More |
|-------------------------------------------------------|------------------|------------|------|
|-------------------------------------------------------|------------------|------------|------|

| Forcite Dynamics       | <b>—</b>               |
|------------------------|------------------------|
| Dynamics Thermo        | stat Barostat Advanced |
| Ensemble:              | NVT -                  |
| Initial velocities:    | NVE<br>NVT             |
| Temperature:           | NPH<br>NPT K           |
| Pressure:              | 0,0 GPa                |
| Time step:             | 1,0 fs                 |
| Total simulation time: | 5,0 ps                 |
| Number of steps:       | 5000                   |
| Frame output every:    | 5000 • steps           |
|                        | Help                   |

| Forcite Dynamics  | ;                 | <b>-</b> ×- | Forcite Dynamic      | :s              | ×        | 🔳 Forcite Dyna   | mics                   |           |
|-------------------|-------------------|-------------|----------------------|-----------------|----------|------------------|------------------------|-----------|
| Dynamics   Thermo | ostat Barostat    | Advanced    | Dynamics Therm       | nostat Barostat | Advanced | Dynamics T       | hermostat Baros        | tat Advar |
| nsemble:          | NVT 💌             |             | Ensemble:            | NVT 💌           | [ ]      | Thermostat:      | Berendser              | •         |
| tial velocities:  | Random 💌          |             | Initial velocities:  | Random 💌        | [        | Temp. differenc  | e: Velocity So<br>Nose | ale       |
| nperature:        | Random<br>Current | к           | Temperature:         | 298,0           | к        | Q ratio:         | Andersen<br>Berendsen  |           |
| ire:              | 0,0               | GPa         | Pressure:            | 0,0             | GPa      | Collision ratio: | NHL<br>1,0             |           |
| p:                | 1,0               | fs          | Time step:           | 1,0             | fs       | Decay constan    | it: 0,1                | рs        |
| ulation time:     | 5,0               | ps          | Total simulation tim | . 5,0           | ps       |                  |                        |           |
| of steps:         | 5000              |             | Number of steps:     | 5000            |          |                  |                        |           |
| output every:     | 5000              | steps       | Frame output every   | 5000            | steps    |                  |                        |           |

| 🔳 Forcite Dy    | mamics    |               | <b>-</b> × |
|-----------------|-----------|---------------|------------|
| Dynamics        | Thermo    | stat Barostat | Advanced   |
| Ensemble:       |           | NVT 💌         |            |
| Initial velocit | ies:      | Random 💌      |            |
| Temperature     | c         | 298,0         | к          |
| Pressure:       |           | 0,0           | GPa        |
| Time step:      |           | 1,0           | fs         |
| Total simulat   | ion time: | 5,0           | ps         |
| Number of st    | eps:      | 5000 ÷        |            |
| Frame outpu     | t every   | 5000          | steps      |
|                 |           |               | Help       |
|                 |           |               |            |

| Forcite D     | ynamics |                                    | ×        |
|---------------|---------|------------------------------------|----------|
| Dynamics      | Thermo: | stat Barostat                      | Advanced |
| Thermostat    |         | Berendsen                          | -        |
| Temp. diffe   | rence:  | Velocity Scale<br>Nose<br>Andersen |          |
| Q ratio:      |         | Berendsen                          |          |
| Collision rat | io:     | 1,0                                |          |
| Decay con     | stant:  | 0,1                                | ps       |
|               |         |                                    |          |
|               |         |                                    |          |
|               |         |                                    |          |
|               |         |                                    |          |
|               |         | [                                  | Help     |

These values can be 30, 30000, 100 for equilibration and 50, 50000, 4 after the restart to accumulate data for your equilibrium trajectory

Click on More... to set options for the Task

#### > Choose Forcefield, Set Computer options and Run

| Forcite Calcula | ition                                         | ×    |
|-----------------|-----------------------------------------------|------|
| Setup Energy    | Job Control                                   |      |
| Forcefield:     | clayff 🗨                                      | More |
| Charges:        | Forcefield assigned                           | More |
| Quality:        | Use current<br>Charge using QEq               |      |
| Summation metho | Charge using Gasteiger<br>Forcefield assigned |      |
| Electrostatic:  | Ewald 💌                                       | ]    |
| van der Waals:  | Ewald 💌                                       | ]    |
|                 |                                               | More |
|                 |                                               |      |
|                 | Run                                           | Help |

| Setup Energy               | on<br>Job Control |                      |
|----------------------------|-------------------|----------------------|
| Gateway location:          | My Computer       | •                    |
| Queue:<br>Job description: | <br>  Au          | <u>ت</u><br>utomatic |
| Run in parallel on:        | 2 in d cores      |                      |
|                            |                   |                      |
|                            |                   | More                 |
|                            |                   |                      |

15

# 9. Analyzing the results (while connected to the license server)

**Sefore carrying out analysis, you need first to specify different groups of atoms in the system.** 

#### Go to Edit -> Atom Selection

| Atom Selection                     | ×             |
|------------------------------------|---------------|
| Select by Property:                | Select All    |
| Element                            | Deselect All  |
| Is Cs                              | <b>•</b>      |
|                                    |               |
| Selection mode                     |               |
| Create a new selection from all    | visible atoms |
| Select from the existing selection | n             |
| Add to the existing selection      |               |
| Select                             | Help          |

Select the one atom or a group of atoms that will be used for analysis.

#### Go to Edit -> Edit Sets

| Edit Sets | ×      |
|-----------|--------|
|           | New    |
|           | Delete |
| I         | Select |
|           | Help   |

#### Click on New and give a name to the set of atoms

| 📊 Define New Set |        | <b>X</b> |
|------------------|--------|----------|
| Name: Hydrogen   |        |          |
| 🔽 Show set       |        |          |
| ОК               | Cancel | Help     |

Repeat the previous steps to define other sets of atoms

#### Go to Module -> Forcite tools. Click on the icon and then select Analysis.

A list of properties is displayed on the left and their type (structural, dynamical, statistical) is given on the right.

Here we are going to look at the following properties:

#### **Statistical properties Structural properties Dynamical properties Temperature** Pressure **Radial distribution function** Mean squared displacement Hamiltonian (max distance – 10A) Velocity autocorrelation **Potential energy** $\checkmark$ Concentration profile (think about the function and Power spectrum components directions: (0 0 1), (0 1 0), or (1 0 0); (use 3ps as the maximum length Total kinetic energy increase the number of bins to 500) of the VACF calculation) Forcite Analysis X Analysis / Category Anale distribution Structural Cell parameters Statistics Density Statistics Click on the property you want to analyze Density field Structural $\geq$ Dipole autocorrelation function Dynamic Eluctuation propertie Dunamic Concentration profile Choose the sets of atoms (some properties require one set, some $\geq$ Trajectory: water others – two) • Sets: 100 Specified direction (h k l) Choose or insert the appropriate options Number of bins Raw profile ÷ bins Smoothed profile Width: 3,0 Click on Analyze to launch the analysis $\geq$ Frames to average Help Analyze

17