

Molecular Modeling of Cement Materials

Current objectives

• Use statistical mechanics to develop quantitative molecular-level understanding of cement phases, their interfaces, and water in the pores:

NE-M1-PRI12ENP – Integrated Nuclear Engineering Project, February-June 2025 "Molecular modeling of materials for nuclear engineering applications"

- Structure and dynamics of aqueous interfacial species
- Hydration, adsorption, H-bonding, diffusion
- Atomistic mechanisms of interfacial sorption and transport

Non-trivial problems

- Complex crystal structures, low symmetry, variable composition
- Incompletely and poorly characterized, occur as very finegrained material
- Large unit cells, stacking disorder

Subatech

- Layered structures with significant electrostatic fields
- Availability of empirical force-field parameters for realistic molecular modeling

	Portlandite Ca(OH) ₂	Hydrocalumite (AFm) [Ca ₂ Al(OH) ₆]Cl·2H ₂ O	Tobermorite (C-S-H) Ca ₅ Si ₆ O ₁₆ (OH) ₂	Ettringite Ca ₆ [Al(OH) ₆] ₂ * [SO4] ₃ *26H ₂ O	Na-kanemite (ASR gel) NaHSi ₂ O·3H ₂ O	K-kanemite (ASR gel) KHSi ₂ O
<i>a /</i> Å	3.57	10.02	11.16	11.02	5.01	8.13
exp.	3.59	9.979	11.16	11.26	4.95	8.15
<i>b /</i> Å	3.57	5.94	7.26	10.94	19.41	12.54
exp.	3.59	5.751	7.30	11.26	20.50	12.52
<i>c /</i> Å	4.91	15.99	9.61	21.30	7.34	4.76
exp.	4.91	16.320	9.57	21.46	7.28	4.89
α/°	90.01	90.00	103.47	90.50	89.74	90.00
exp.	90.00	90.00	101.08	90.00	90.00	90.00
β/°	89.98	102.89	89.46	89.80	89.63	90.00
exp.	90.00	104.53	92.83	90.00	90.00	90.00
γ/ °	120.01	90.00	90.13	119.80	89.81	90.00
exp.	120.00	90.00	89.98	120.00	90.00	90.00
V Å ³	54.3	927.6	757.8	2232.3	714.46	485.28
exp.	54.82	906.64	763.87	2358.53	737.71	498.97
Cell pa Bond	arameters < distances < 3	2% 3%	Kalinichev and Kir Kirkpatrick, Kalinic Kalinichev, et al. C Tararushkin et al.	kpatrick, Chem. M shev, et al., Mater. Cement & Concrete Cement & Concret	laterials, 14 , 3539 & Struct., 38 , 449 e Res., 37 , 337-34 te Res., 156, 1067	-3549 (2002) -458 (2005) -7 (2007) 759 (2022)

