

Steelink		C wt%	H wt%	O wt%	N wt%	S wt%	P wt%	carboxyl mol/kg(C)
	Steelink	59.5	5.2	33.5	1.8	-	-	6.6
	TNB	57.4	4.9	34.0	3.7	-	-	7.0
12.5°	Diallo	53.3	4.2	37.9	1.4	3.0	-	9.3
-57	Schulten	51.5	4.0	41.8	2.0	0.6		14.1
~ **•	Exp.(SR)	52.5	4.2	42.7	1.1	0.6	0.02	9.85
"The TNB model inco	proving the second seco	ode fu retro-	lly the	.	5			Jet
results of experiment biosynthetic analyses	ai data and s" (Sein et a	I., 199	9)	-5	S.C.			

Diffusion Coefficients of in NOM Solutions	Aqueous S	pecies						
	D_i (10 ⁻⁵ cm ² /s)	<i>D_i^{bulk}</i> (10 ⁻⁵ cm ² /s)						
Na⁺	1.0	1.2 1.22 ^a 1.22 ^b						
Cs⁺	0.9	1.3 (at 3m CsCl) 1.8						
Mg ²⁺	0.6	0.62 ^a						
Ca²⁺ (average)	0.4	_						
Ca ²⁺ (inner-sphere)	0.03	_						
Ca ²⁺ (bulk in NOM soln)	0.7	0.55 ^a						
NOM center of mass	0.05	_						
	^a Obst & Bradaczek (1996) ^b Lee & Rasaiah (1996)							
Materia Maria	NE-M1-PRI12ENP – Integrated Nuclear Engineering Project, February-June 2025 "Molecular modeling of materials for nuclear engineering applications"							

