

Classical MC & MD Molecular Modeling - Details
 N ~ 1,000-1,000,000 atoms / t ~ 1-10 ns / n ~ 10⁶-10⁷ conf. Typically, constant <i>T</i>,<i>P</i> or <i>T</i>,<i>V</i> statistical ensembles
Many molecular modeling software packages currently available.
 Most important: develop efficient numerical tools for the analysis of MD- generated trajectories or MC-generated ensembles of configs.
 Coordinates → Equilibrium thermodynamic properties
\rightarrow Atom-atom radial distribution functions
ightarrow Coordination numbers, hydration numbers
\rightarrow Fluid structure, hydration shells
ightarrow Molecular cluster formation and sorption environments
• Velocities \rightarrow Diffusion
\rightarrow Velocity autocorrelation functions
\rightarrow Power spectra; dynamic details of atomic motions
 Comparison and interpretation of spectroscopic measurements: NMR, IR,
Raman, X-ray.
 Molecular mechanisms controlling the behavior of aqueous species in
solution and at substrate interfaces.
NE-M1-PRI12ENP - Integrated Nuclear Engineering Project, February-June 2025 "Molecular modeling of materials for nuclear engineering applications" 2

Molecular C	lust	teriz	zati	on i	n S	upe	rcr	itica	al W	late	er	
Avera	age .	Para	amei	ters	of H	<u>I-bo</u>	nde	d Cl	uste	e <u>rs</u>		
Cluster topology	3a	3b	4a	4b	4c	4d	5a	5b	5c	5d	5e	
$\langle \angle O \cdot O \cdot O_l \rangle / \circ$	109	60	110	107	114	87	110	108	112	107	105	
$\langle \angle O \cdot O \cdot O_2 \rangle / \circ$					60				86	60		
$\langle \angle O \cdot O \cdot O_3 \rangle / \circ$										119		
$\langle R_{\rm O-H} \rangle / {\rm \AA}$	2.04	2.07	2.04	2.04	2.06	2.03	2.04	2.04	2.05	2.06	2.05	
$\langle R_{ m O\cdot \cdot O} angle$ / Å	2.90	2.89	2.91	2.91	2.90	2.90	2.91	2.91	2.91	2.90	2.92	
$\langle \angle O \cdot \ \cdot \ H – O \rangle / \ ^{\circ}$	149	143	150	150	146	150	150	150	149	146	150	
$\langle U_{ m HB} angle$ / kJ/mol	-16.9	-16.4	-16.9	-16.7	-16.3	-17.0	-16.9	-16.8	-16.7	-16.3	-16.8	
Atlantique spis-Pays o la Lore	atech		NE-	M1-PRI12 "Moleo	ENP – Int cular mode	egrated N eling of ma	luclear Er aterials for	ngineering nuclear er	y Project, ngineering	February applicatio	-June 202:	ī

Averag	e numt	per of H-bonds p	er water mole	ecule and cond	centration of 0.692a/cm^3	
as a fu	nction of	of a lifetime criter	rion for H-bon	ds.	1 0.092 g/cm*	
$\Delta \tau / \mathrm{ps}$	$\langle n_{\rm HB} \rangle$	% of monomers (0 bonds)	% of dimers (1 bond)	% of trimers (2 bonds)	% of tetramers (4 bonds)	
0.01	1.41	16.6	39.4	31.9	10.7	
0.1	0.83	40.2	40.2	16.3	3.0	
0.2	0.57	55.0	34.2	9.5	1.2	

