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 Use powerful computers to calculate 
properties of materials, represented by 
N interacting particles (atoms, 
molecules, ions, etc.)

 Time ~ 0.1 - 1.0 ns

 L ~ 10 - 100 nm

 N ~ 1,000 – 1,000,000 atoms

What is Computational Molecular Modeling?

 Use statistical mechanics to dynamically model such processes 
as hydration, adsorption, intercalation, expansion, diffusion, and 

the behavior of water and ions.

 Objective: Quantitative understanding of the molecular- and 

nano-scale structure and dynamical behavior of materials
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Thermodynamic State vs Mechanical State

 Thermodynamic system in equilibrium is 
described by a very limited number of 
macroscopic variables – T, P, V, x

 Mechanical system of N particles (atoms, 
molecules) free to move in 3 dimensions is 
described by 3N coordinates at every instant  
(N ~ NA ~ 6·1023)

 Motions of such a huge number of objects can 
be described only statistically

 Very many (equivalent?) mechanical states 
correspond to the same thermodynamic 
equilibrium state
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Motion in Phase Space
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E3=U3+K3
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r                coordinate

p = mv momentum

F = ma = k(r - r0)     equation of motion

U = ½ k(r – r0)
2 potential energy

K = ½ mv2 = p2/2m kinetic energy

2D phase space (1D motion)

N = NA ~ 6·1023 atoms        

generalized coordinates
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6N-D phase space
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Classical Hamiltonian

generalized coordinates

generalized momenta

Hamiltonian (total energy)

kinetic energy

potential energy
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Phase Trajectory and Ergodicity 

Equivalence of Time- and Ensemble- Averages

phase trajectory on a 
constant-energy surface ))(),(()( ttt qpΓΓ ≡

A – some observable macroscopic property

point in the phase space

The mechanical system is ergodic, if over long periods of time all points on the phase 

surface can be equally accessible
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averaging over a dynamic 

trajectory

averaging over a statistical 

ensemble of atomic 

configurations

Equivalence of time- and ensemble- averages – ERGODICITY
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Partition Function
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thermodynamic state T,V
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When cartesian coordinates and cartesian momenta are used, the kinetic energy factor of the 

total energy represented by the hamiltonian H in the expression for Z reduces to a constant 

depending upon the size, temperature and volume of the system: 
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 MD - time averages over a dynamic trajectory in the phase space of the 
simulated system

 MC - ensemble averages over a computer-generated random Markov 
chain of molecular configurations

 Periodic boundary conditions (PBC) 

Two Principal Approaches to Classical Molecular 

Modeling

http://isaacs.sourceforge.net/phys/pbc.html 
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Monte Carlo Simulations – Ensemble Averages

 −= rr dTkUQ ]/)(exp[ Bconf
3N-dimensional integral

(Metropolis et al., 1953)

Initial configuration U(rold)

Displacement U(rnew)

exp(-∆U/kBT)<rand(0,1)

∆U = Unew − Uold < 0
yes

yes

no

no

accept reject
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Monte Carlo Simulations in Different Ensembles

p = exp( −βU) β = 1/kBT

N V T – canonical ensemble

N P T – isothermal-isobaric ensemble

p = exp(–βH) = exp[–β (U +PV) + N lnV ] 

(Metropolis et al., 1953)

(Wood, 1968; McDonald, 1969)
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Monte Carlo Simulations in Different Ensembles

µ V T – grand canonical ensemble

p = exp(–Ψ) = exp[–β (U – µN) – lnN! – 3N lnΛ + N lnV ] 

Gibbs ensemble

(Norman & Filinov, 1969)

(Panagiotopoulos, 1987)

NE-M1-PRI12ENP – Integrated Nuclear Engineering Project, February-June 2025
“Molecular modeling of materials for nuclear engineering applications” 12

Use powerful computers to numerically solve Newtonian equation of motion    
for N interacting particles:

ri(t+∆t) = ri(t) + vi(t)∆t + ½ ai∆t2;                          

∆t ~ 10-15 sec

ai = Fi/m = [ −∂U(r1,r2,... rN)/∂ ri ] / m ;

i=1,2,…,N

N ~ 1,000 – 100,000

U = ΣΣ Uij
+ ΣΣΣ Uijk + . . .

Molecular Dynamics Simulations

N V E – microcanonical ensemble – most natural for MD, isolated system

N V T – canonical ensemble – the system can exchange energy with the environment 

(thermostat)

N P T – isothermal-isobaric ensemble – volume of the system can also change (barostat)

µ V T – grand canonical ensemble – the system can exchange mass with the environment 

(???)
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ri(t+∆t) = ri(t) + vi(t)∆t + ½ ai∆t2;                          ∆t ~ 10-15 sec

ai = Fi/m = [ - ∂U(r1,r2,... rN)/ ∂ ri ] / m ; i=1,2,…,N
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Molecular Modeling: Intermolecular Interactions

MD

MC

U = ΣΣ Uij

Uij = ΣΣ(Aij/rij
12 - Bij/rij

6 + qiqj /ε0rij) + Σ ½kb (rij - r0)2 + Σ ½kθ (θij - θ0)2

Short-range repulsion   v-d-Waals    Coulombic         bond stretching bond bending
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Potential Models of Simple Aqueous Species

Na+ Ca2+Cl− H2O
+0.41

+0.41

−0.82

+0.41

+0.81
+1.123

−1.041

−1.041

−1.041

−0.75

−0.72

−0.75

−0.3256

−0.3256

+0.6512

CO2 CO3
2− HCO3

−

Uij = ΣΣ(Aij/rij
12 - Bij/rij

6 + qiqj /ε0rij) + Σ ½kb (rij - r0)2 + Σ ½kθ (θij - θ0)2

Short-range repulsion   v-d-Waals    Coulombic         bond stretching bond bending

Rigid models (fixed geometry) are also useful sometimes
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Models of Complex Organic Molecules

NOM (humic acid) model

Polyamide membrane model
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Potential Energy of Intermolecular Interaction

Typical Models

U

U

U

U

U
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Potential Energy of Intermolecular Interaction

U U U U U U

U

U

U
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Typical Nonbonded Terms

Uij = ΣΣ(Aij/rij
12 - Bij/rij

6 + qiqj /ε0rij) 
Short-range repulsion   v-d-Waals    Coulombic
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Typical Bonded Terms

U

U

2
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Force Field Parameters Determination

Empirical (from experimental data)

 Structural information (bond distances, angles, crystal cell 
parameters – from X-ray, neutron and electron diffraction)

 Spectroscopic information (vibrational frequencies, NMR 
chemical shifts, atomic coordination)

 Crystal properties (elastic constants or bulk modulus, refractive 
indices, dielectric constants, piezoelectric constants)

 Obtain only equilibrium-based values
 Parameters implicitly include temperature effects
 Force fields based on models of simple molecular fragments 

for specific applications (organic, bio-organic, zeolites, clays, 
etc.)
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Force Field Parameters Determination (2)

 Ab initio - electronic structure calculations
 Parameterize interactions that cannot be evaluated through 

experimental means
 Control geometries of clusters to obtain energies for non-equilibrium 

ranges
 Require extended basis sets (and GC or MP2) for accuracy
 Incorporate electron correlation (VDW) with DFT (cf. Hartree-Fock)
Partial charge assignments
 Experimental deformation densities based on precision X-ray 

diffraction analysis
 Mulliken electron population analysis from quantum-mechanical (MO) 

calculation
 CHELPG method of fitting charges to MO-based electrostatic 

potential
 QEq method based on bond geometry and electronegativities of 

various atoms
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Classical Molecular Models of Water
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The Structure of H2O Molecule 

and Classical Intermolecular Potentials

 Ab-initio quantum 
mechanical potentials

 Empirical and semi-
empirical potentials

Uij = ΣΣ(Aij/rij
12 - Bij/rij

6 + qiqj /ε0rij) +
Short-range repulsion    Van der Waals Coulombic

+ Σ ½ kb(rij - r0)2 +  Σ ½ kθ(θij - θ0)2

bond stretching bond bending

SPC

SPC/E

TIP3P

MCY

TIPS2

TIP4P

BNS

ST2

TIP5P
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H2O: Central Force and BJH Flexible Potentials
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(Bopp et al., 1983)

ρ 1 = (r1 – re)/r1                  re=0.9572 Å 
ρ 2 = (r2 – re)/r2
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 MD - time averages over a dynamic trajectory in the phase space of the 
simulated system

 MC - ensemble averages over a computer-generated random Markov 
chain of molecular configurations

 Periodic boundary conditions (PBC) 

Periodic Boundary Conditions

http://isaacs.sourceforge.net/phys/pbc.html 
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Minimum Image Convention and Spherical Cutoff

Short-range interactions



14

NE-M1-PRI12ENP – Integrated Nuclear Engineering Project, February-June 2025
“Molecular modeling of materials for nuclear engineering applications” 27

Periodic 

Boundary 

Conditions 

and 

Minimum Image 

Convention 

Better 

Explained (I)
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Periodic 

Boundary 

Conditions 

and 

Minimum Image 

Convention 

Better 

Explained (II)
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Long-Range (Electrostatic) Interactions

Ewald summation U

U

U
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Total Potential Energy of a System

U U U U U U

U

U

U
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Molecular Mechanics & Energy Minimization

U = ΣΣ Uij(qij)
+ ΣΣΣ Uijk(qijk) + . . .

min  ∂ U(q1,q2,... qN) / ∂ qi = 0;

∂2 U(q1,q2,... qN) / ∂ qi∂ qj > 0; 

i,j = 1,2,…,N

Also called  structure optimization

The goal is to find a set of coordinates 

(atomic positions) that result in the 

lowest possible energy of the 

system

 most stable configuration
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Molecular Mechanics & Energy Minimization (2)

Component contributions to the total 
potential energy for dichloroethane as 
a function of the torsion angle 
defined by Cl-C-C-Cl. 

Structural models corresponding to 
the three stable conformers:

The least stable transition structure

Global minimum

Two local minima
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Molecular Mechanics (3)

Energy scale is always relative:   U(q) – Uo(q)

H = U(q) + K(p) = U(r) + K(v)

Kinetic energy K(v)  → Temperature

No kinetic energy     → No motion
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Molecular Mechanics (4)

K0 → T0

Global energy minimum 
single most stable

configuration
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Molecular Mechanics (5)

K1 → T1

A range of states near global 

energy minimum
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Molecular Mechanics (6)

K2 → T2

3 different states: 

1 near global minimum

2 near local minima

separated by energy barriers 
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Molecular Mechanics (7)

K3 → T3

1 single state: 

nearly free torsional rotation
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Molecular Mechanics (8)

K4 → T4

1 single state: 

free rotation, no barriers
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 N ~ 1,000-1000,000 atoms   /       t ~ 1-10 ns     /      n ~  106-107 conf.
 Typically, constant T,P or T,V statistical ensembles
 Many molecular modeling software packages currently available.
 Most important: develop efficient numerical tools for the analysis of MD-

generated trajectories or MC-generated ensembles of configs.
 Coordinates → Equilibrium thermodynamic properties

→ Atom-atom radial distribution functions
→ Coordination numbers, hydration numbers  
→ Fluid structure, hydration shells  
→ Molecular cluster formation and sorption environments

 Velocities → Diffusion
→ Velocity autocorrelation functions 
→ Power spectra; dynamic details of atomic motions

 Comparison and interpretation of spectroscopic measurements: NMR, IR, 
Raman, X-ray.

 Molecular mechanisms controlling the behavior of aqueous species in 
solution and at substrate interfaces.

Classical MC & MD Molecular Modeling - Details
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 MD - time averages over a dynamic trajectory in 
the phase space of the simulated system

 MC - ensemble averages over a computer-
generated random Markov chain of molecular 
configurations

 Periodic boundary conditions (PBC) 

Methods of Molecular Computer Simulations: 

Molecular Dynamics (MD) and Monte Carlo (MC)

T
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N
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Possible Sources of Errors 

in Molecular Simulations

 System size, periodicity, correlation length 

 Initial configuration: coordinates, velocities (MD), doubling temperature

 Equilibration

 MD: time scale, time step, numerical integration, total simulation time

 MC: acceptance rate, efficiency probing the configuration space

 Accumulation statistics, convergence, statistical errors
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Statistical Distributions

MD simulation of 2.2m NaCl Aqueous Solution

at 1 bar and 300 K 

These distributions are due to the natural fluctuations of the thermodynamic 

properties, corresponding to an equilibrium state of the simulated system
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Fluctuation Properties
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Statistical Errors
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Method of block averages

If Ai is the mean value of the property A computed over the block i, then the statistical 

error δA of the mean value A over the whole trajectory (or chain of configurations) 

can be estimated as 
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Monte Carlo Simulations in Different Ensembles

p = exp( −βU) β = 1/kBT

N V T – canonical ensemble

N P T – isothermal-isobaric ensemble

p = exp(–βH) = exp[–β (U +PV) + N lnV ] 

 Most efficient acceptance ratio for new configurations ~ 50%
 Relative frequency of various types of moves also important
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Thermodynamic Properties of Water  

MC Simulations with TIP4P potential

τ=T/Tc

Kalinichev, Rev. Mineral.Geochem., 42, 83-129 (2001)
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Fluid Structure 

Radial Distribution Functions (RDFs)

 Pair distribution function or radial distribution function g(r) – probability to find 
an atom i at a certain distance r from another atom j

 Normalized to a completely random distribution of atoms in space

 Comparable to exp. data on X-
ray or neutron diffraction

 In practice, δ (r-rij) is replaced 
by a function which is non-zero 
in a very narrow range of r, 
and g(r) is calculated as a 
histogram

 g(r) = 1 for ideal gas
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Structure of Water: Atom-Atom Radial Distribution 

Functions (RDFs)

Distance 
criterion for 
H-bonding

Interstitial
H2O molecule

 Ice: Tetrahedrally ordered O in the diamond-like 

network

 H positions are disordered 

 Proton diffusion

 Proton hopping

 Liquid: Only short-range tetrahedral ordering 

remains

*

*
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Fluid Structure - Running Coordination Numbers
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Average number of atoms i within a sphere of radius r from another atom j :

 At T < 373 K only water-
separated Na+-H2O-Cl- ion 
pairs can be found in the 
solution

 At 373 K < T < 573 K ~25% of 
ions participate in contact ion 
pairs 

 At T > 673 K the number of 
contact ion pairs increases 
very quickly involving the 
majority of ions

RDFs and running coordination numbers for Na+-Cl- Ion pairs in solution
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Radial Distribution Functions 

and Running Coordination Numbers

 Importance of g(r) normalization
 Height of the g(r) peaks is not 

necessarily an indication of high 
population

 Average density or concentration of 
species is equally important
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3 Cs+ ions in aqueous solution with humic acid (NOM anion)
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Micro-Thermodynamic Properties:

Pair Energy Distributions
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Getting physical address (MAC address) of your Wi-Fi card

When you are connected to any Wi-Fi (wireless) network    Go to you “Network Parameters” menu 

 Go to “Status”  Go to “Details of the wireless connection”

Your table should look something like this:
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Questions for the final paper / report on one of the topics: 
1 – clays; 2 – cement; 3 – TiO2 surfaces; 4 – corrosion; 
5 – organics, etc. (Please use only as a guidance)

 What molecular modeling method was used and why?

 Was it a fully atomistic simulations, or some simplified models were used?

 What other approximations were used in the modeling?

 What was the number of particles in the simulations? Was it big enough for the specific 
problem? Was it small enough to make the simulations computationally efficient?

 How long-range electrostatic interactions were handled in the simulations? Was it 
important for the given problem?

 What kind of boundary conditions were applied to the simulation box? Why?

 What properties of the system were calculated from the molecular simulation? 

 Make a qualitative assessment of the accuracy for the calculated properties given the 
number of atoms in the simulated system and the duration of the simulation.

 What other properties would you additionally calculate from the same simulations for 
the same system?

 Formulate 2 or 3 strong points of the given molecular simulation paper and 2 or 3 weak 
points of the paper.


