

	Questions for the final paper / report on one of the topics: 1 – clays; 2 – cement; 3 – TiO_2 surfaces; 4 – corrosion; 5 – organics, etc. (Please use only as a guidance)	
≻	What molecular modeling method was used and why?	
≻	Was it a fully atomistic simulations, or some simplified models were used?	
≻	What other approximations were used in the modeling?	
	What was the number of particles in the simulations? Was it big enough for the specific problem? Was it small enough to make the simulations computationally efficient?	
	How long-range electrostatic interactions were handled in the simulations? Was it important for the given problem?	
≻	What kind of boundary conditions were applied to the simulation box? Why?	
≻	What properties of the system were calculated from the molecular simulation?	
	Make a qualitative assessment of the accuracy for the calculated properties given the number of atoms in the simulated system and the duration of the simulation.	
	What other properties would you additionally calculate from the same simulations for the same system?	
>	Formulate 2 or 3 strong points of the given molecular simulation paper and 2 or 3 weak points of the paper.	
IMT At Britagne Eccle Me	ME-M1-PRI12ENP – Integrated Nuclear Engineering Project, February-June 2025 "Molecular modeling of materials for nuclear engineering applications"	53