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Quelques formulations utilisées

• Revolution quantique 

• Superpouvoirs de particules 

• Puissance et mystérieuse 

• Dans l’Univers quantique un chat peut être mort et vivant 

• Physique Alternative 

• Le qubit est une puissance propre à cette technologie 

• Elle est parfaitement claire en langage mathématique mais impossible à 
formuler … 

• …



What is hidden behind all this excitation about the quantum world? 
«capteurs, ordinateur quantique, crypto-quantique» 

By the way, in the next years, we will celebrated the first 100 years of the quantum 
physics, with the theoretical developments of Niels Bohr, Erwin Schrödinger, 

Werner Heisenberg et al. in the middle of the 1920’s.   

Only 5 generations of physicists since the birth of the quantum physics!



Caveats and Outlook

• I am not an expert in quantum computing. I know quantum mechanics 

• This is not an exhaustive talk 

• Introducing what is the idea behind quantum computing 

• Introducing one of the quantum technology developments that has lead to artificial 
quantum complex system 

• Understanding what it has been achieved with the quantum processor «Sycamore» 
programmable superconductor processor of Google AI Quantum laboratory



Publication in 2019

• Sycamore programmable 
superconducting processor 

• Quantum algorithms 

• 200 seconds of millions of 
times quantum sampling 

• 10 thousand years for a 
«classical» supercomputer 

• Quantum supremacy for this 
very specific computational 
task 

• Acclaiming a much-anticipated 
computing paradigm

Nature 574 (2019) 505 https://inspirehep.net/literature/1760347

https://inspirehep.net/literature/1760347


Back to 1982

I. Simulating a classical system 

II. Time for simulating a probability 

III. Quantum computers 

IV. Quantum system simulated by a 
classical computer? 

V. Negative probabilities 

VI. Polarisation of photons 

VII.Two photon correlation experiment

International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 

Simulating Physics with Computers 
Richard P. Feynman 

Department of Physics, California Institute of Technology, Pasadena, California 91107 

Received May 7, 1981 

1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 
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Simulating a classical system
• Time has to be discrete 

• A kind of cellular automaton (Game of life is another kind of known 
cellular automaton) from a classical state to new classical state in 
discrete time jumps 

• Classical physics is causal : future is calculated from past 

• Classical physics is reversible   

• Classical physics is local : only  few points in the neighborhood of a 
point contribute to its evolution in time 

• Classical physics is quite adaptable to computing calculation 

• Computing complexity increases «proportional to" (polynomially with)  
N (number of space points, number of particles, …) 

si = Fi(sj, sk, . . . . )

sj, sk, . . . past of i

sj, sk, . . . neighborhood of i

Richard Feynman, International Journal of Theoretical Physics 21 (1982) 467

https://inspirehep.net/literature/1115226


Simulating probabilities
• For each particle P(x,t). Space and time has to be discrete 

• If one takes k bits, since P is between 0 and 1, the smallest probability is 2-k. 

• Computing complexity increases exponentially. For R particles in N space-time points, we need NR 
configurations. Considering that somehow R is proportional to N, one get NN configurations 

• Simulating probabilities becomes imposible as N increases. 

• Imaging a probabilistic computer. « randomisation of the last to digits of a number or what ever you 
could imaginate», but you do it following the probability evolution laws. 

• Same input (t=0) can result in several outputs at the final time. One has to repeat the calculation by a 
large number of times (n) to build the probability distribution and the final time, with an error related to 
square of n 

• However, such a probabilistic computer is not adapted to simulate quantum systems. Why?

Richard Feynman, International Journal of Theoretical Physics 21 (1982) 467

https://inspirehep.net/literature/1115226


Quantum physics is not probability

• In quantum physics, linearity is respected at the amplitud of the 
wave function 

• The amplitud consist in a module and in a phase 

• The sum of two probabilities 1/2 can result in a probability 
between 0 and 1 depending on the phase. 

• Two extreme results are destructive (0) and constructive (1) 
interference of the amplitude 

• Quantum physics is not local due to intrication 



Quantum computing
• Basic element : a quantum system with two stationary states  

• It is possible to set at t=0 the state of the basic element two any state. a_i are 
imaginary (amplitude and phase) numbers 

• You have N basic elements. The total number of posible states of such es system is 2N. 
All the linear combinations of those 2N states are stationary states of the system 

• During a time Δt you can make interactions between the basic element  represented by 
a  

• Any quantum system could be then simulated with the right choice of   

• Computing increase proportional to the size of the system, while in a classical 
computing the increase is exponential. 

• The final state «read-out» is the result of one single simulation. One needs to perform 
many simulations to determine (read) the final state 

ℋi

ℋi

Richard Feynman, International Journal of Theoretical Physics 21 (1982) 467

E1

E0

ψ = a0ψ0 + a1ψ1

|0101111001 ⋅ ⋅ ⋅ 0⟩

|ψ⟩ = a0 |0⟩ + a1 |1⟩

ψ(ti + Δt) = 𝒰iψ(ti) = e
i
ℏ ℋiΔtψ(ti)

ψf = Πi=m
i=1 e

i
ℏ ℋiΔtψ(t = 0)

In the 80’s this was science fiction

Linearity and quantum 
parallelisation

https://inspirehep.net/literature/1115226


Several Caveats
• Basic element is called qubit. One cannot clone a qubit. C’est le théorème de non-clonage 

quantique 

• Extremely large number of possibilities does exists for the choice of . Basis choices of  are 
 for setting a qubit to a precise state and  to interact two qubits (a quantum gate) 

• The interaction can results in the intrication of the information in two different qubits. Non-locality, 
which is projected at the end of the calculation when the final state is measured 

• You cannot distinguish two qubit (quantum) states with one single measurement of the qubit. In 
order to determine the finale state one has to perform several simulations  

• One assumes that there is no errors during each quantum simulation ( NISQ, see later) 

• A quantum calculation consists on n qubits, m cycles ( ) and N simulations

ℋi ℋi
ℋs ℋg

ℋi

Michel LE BELLAC, Reflets de la Physique, n.67 (2020) 4

https://www.refletsdelaphysique.fr/articles/refdp/pdf/2020/04/refdp202067p4.pdf


Quantum calculation 

•  qubits 

•  cycles with a Hamiltonian  

• The choice of  is given by the quantum algorithm 

• Hilbert space of dimension  

• Projection (reading) of the  qubits state at the end of each cycle 

• N samples of the quantum calculation to determine the final n-qubit 
state 

• Each cycle need fully coherence of the quantum process

n

m ℋi from i = 1 to m

ℋi

2n

n



Preparing the initial state of the qbit
• After setting the bit tow let’s state , one can be able to set the qubit to any required state, 

combination of the two states :    

• Mathematically this can be represented by a 2D unitary (conjugate transposed is equal to its 
inverse) matrix   :   

• The possibilities of  are infinite (there is the question of the resolution of  factor here. If it 
can be read with a precision of k-bit, therefore one has  possibilities of . But the factor 

 is imaginary, therefore one has to consider the precision on the phase, so the total number 
of possibilities  is  (module of the amplitude precision in k-nits and for the phase in m-
bits) 

• For a classical bit, one two possibilities of the initial state are possible 0 or 1 

• Example of  could be 

• Another different exemple 

|0⟩
a0 |0⟩ + a1 |1⟩

𝒰s = e
i
ℏ ℋsΔt |ψ⟩ = 𝒰s |0⟩

𝒰s ai
2k |ai |

ai
2k+m

𝒰s 𝒰s =
1

2 (1 1
1 −1) |0⟩ →

1

2 ( |0⟩ + |1⟩)
𝒰s =

1

2 ( 1 i
−i 1) |0⟩ →

1

2 ( |0⟩ + i |1⟩)
Hadamard gate



Quantum Gates  

• The basic gate in a quantum computing (the equivalent of a 
AND, OR, NOT logical gates) is a Hamiltonian  involving two 
qbits 

• The 2-qubit states are , ,  and  

• This transformation can be represented by a 4D unitary matrix 
 

• Exemple :

ℋg

|00⟩ |01⟩ |10⟩ |11⟩

𝒰g = e
i
ℏ ℋgΔt

𝒰g =

1 0 0 0
0 1 0 0
0 0 1

2

1

2

0 0 1

2
− 1

2

1

2 ( |10⟩ − |11⟩) ⟶ |11⟩

1

2 ( |10⟩ + |11⟩) ⟶ |10⟩

Quantum interference is rich



Back to 1994

• Quantum algorithm for prime 
factorization 

• Shor Algorithm  that could be used 
in a quantum computer  to break 
the RSA 

Peter W. Shor, SIAM J.Sci.Statist.Comput. 26 (1997) 1484 
https://arxiv.org/abs/quant-ph/9508027

RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem that is widely 
used for secure data transmission

https://arxiv.org/abs/quant-ph/9508027
https://en.wikipedia.org/wiki/Public-key_cryptography


Shor Algortihm 

•  qubits are need :  

• Initialization via the Hadamard gate  

• 2-qubit gates 

• Process  single gate and  double gates : 

n

𝒰HG
i

n
n(n − 1)

2

(𝒰HG
n−1)(𝒰G

(n−1)(n−1)𝒰
HG
n−2) ⋅ ⋅ ⋅ (𝒰G

1(n−1) ⋅ ⋅ ⋅ 𝒰G
12𝒰

HG
1 )(𝒰G

0(n−1) ⋅ ⋅ ⋅ 𝒰G
02𝒰

G
01𝒰

HG
0 )

𝒰HG
i =

1

2 (1 1
1 −1)

𝒰G
jk =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθjk

θjk =
π

2k−j
avec k > j

Relative phase  
to the state 

θjk
|11⟩

Quantum Fourier transform



In few words :

A quantum computer  : 

• with N qubits 

• with Hadamard single gates 

• with two-qubits gate setting a phase in the state  

could break the RSA encryption !!! 

Quantum technology is going very quickly !

|11⟩

Specialists said that  «quantum computer technology is 
today as computer technology was in 1945» 

Michel LE BELLAC, 
Reflets de la Physique, 

n.67 (2020) 4

https://www.refletsdelaphysique.fr/articles/refdp/pdf/2020/04/refdp202067p4.pdf
https://www.refletsdelaphysique.fr/articles/refdp/pdf/2020/04/refdp202067p4.pdf
https://www.refletsdelaphysique.fr/articles/refdp/pdf/2020/04/refdp202067p4.pdf


Le Plan Quantique Français

1.8 Md€ 
Capteurs quantiques, Calcul quantique, 

Communications quantiques 
Transfer vers l’industrie 

Aboutir à un marché d’ici a 5 ans 
Technologies «habilitantes" : comme la cryogénie, 

et les matériaux de pointe

Journal du CNRS, 
303 (2021) 12



Josephson Junction

• Josephson Junction : two superconductor 
separated by an  insulator 

• Macroscopic quantum tunneling 

• Macroscopic variable : Phase difference 
between two superconducting wave function 

• Transition : from zero-voltage to nonzero-
voltage state

REVIEW
doi:10.1038/nature10122

Atomic physics and quantumoptics using
superconducting circuits
J. Q. You1,2 & Franco Nori2,3

Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like
artificial atoms. Recent technological advances havemade it possible to implement atomic-physics and quantum-optics
experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far
in this rapidly advancing field.We not only discuss phenomena analogous to those in atomic physics and quantum optics
with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several
prospective directions in this emerging interdisciplinary field.

S uperconducting circuits with Josephson junctions can behave as
artificial atoms. In these quantum circuits, the Josephson junc-
tions act as nonlinear circuit elements (Box 1). Such nonlinearity

in a circuit ensures an unequal spacing between energy levels, so that the
lowest levels can be individually addressed by using external fields (see,
for example, refs 1–9). Experimentally, these circuits are fabricated on a
micrometre scale and operated at millikelvin temperatures. Because of

the reduced dimensionality and thanks to the superconductivity, the
environment-induced dissipation and noise are greatly suppressed, so
the circuits can behave quantum mechanically.
Superconducting circuits based on Josephson junctions have recently

become subjects of intense research because they can be used as qubits—
controllable quantum two-level systems—for quantum computing (see,
for example, refs 1–4 for reviews). Even though the typical decoherence
times of these circuits fall short of the requirements for quantum com-
putation, their macroscopic quantum coherence is sufficient for them to
exhibit striking quantumbehaviour. These circuits can have a number of
superconducting eigenstates with discrete eigenvalues lower than the
energy levels of the quasi-particle excitations that involve breaking
Cooper pairs. This property allows these circuits to behave like super-
conducting artificial atoms. Indeed, there is a deep analogy between
natural atoms and the artificial atoms made from superconducting cir-
cuits (Box 2). Both have discrete energy levels and can exhibit coherent
quantum oscillations between these levels. Whereas natural atoms may
be controlled using visible or microwave photons that excite electrons
from one state to another, the artificial atoms in these circuits are driven
by currents, voltages and microwave photons that excite the system
from one macroscopic quantum state to another.
Differences between superconducting circuits and natural atoms

include the different energy scales in the two systems, and how strongly
each system couples to its environment; the coupling is weak for natural
atoms and strong for circuits. In contrast to naturally occurring atoms,
artificial atoms can be designed with specific characteristics and fabri-
cated on a chip using standard lithographical technologies. With a view
to applications, this degree of tunability is an important advantage over
natural atoms. Thus, in a controllable manner, superconducting circuits
can be used to test fundamental quantum mechanical principles at a
macroscopic scale, as well as to demonstrate atomic physics and
quantum optics on a chip. Moreover, these artificial atoms can be
designed to have exotic properties that do not occur in natural atoms.
In this Review, we highlight the atomic-physics and quantum-optics

phenomena found in superconducting circuits. The novel physics in
these artificial atoms will be emphasized, including phenomena that
do not occur in natural atoms. We also summarize several prospective
directions in this emerging interdisciplinary field. Some of the examples
in this brief overview relate to our work, because we are more familiar
with them.

1Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China. 2Advanced
Science Institute, RIKEN, Wako-shi 351-0198, Japan. 3Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA.

BOX 1

The Josephson junction as a
nonlinear inductor
A superconductor contains many paired electrons, called Cooper
pairs, which condense into the same macroscopic quantum state
described by the wavefunction yj jeiw , with yj j2 being the density of
Cooper pairs. In the absence of applied currents or magnetic fields,
the phase w is the same for all Cooper pairs. A Josephson junction is
composed of two bulk superconductors separated by a thin
insulating layer through which Cooper pairs can tunnel (see figure
below). The supercurrent through the junction is I5 IcsinQ, where
the critical current Ic is related to the Josephson coupling energy EJ
of the junction by Ic5 (2e/B)EJ, and Q5wL2wR is the phase
difference of the two superconductors across the junction. The time
variation of this phase difference is related to the potential
difference V between the two superconductors: dQ/dt5 (2p/W0)V,
where W05h/2e is the magnetic-flux quantum. From the definition
of the inductance V5LJdI/dt, it follows that LJ5W0/(2pIccosQ),
indicating that the Josephson junction behaves like a nonlinear
inductor.

Insulator

SuperconductorSuperconductor

Cooper pair

⎜ψL⎜eiφL ⎜ψR⎜eiφR
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Measurements of Macroscopic Quantum Tunneling out of the Zero-Voltage State
of a Current-Biased Josephson Junction

Michel H. Devoret, ' John M. Martinis, and John Clarke
Department ofPhysics, University of California, Berkeley, California 94720, and Materials and Molecular Research Division,

Lawrence Berkeley Laboratory, Berkeley, California 94720
(Received 26 July 1985)

The escape rate of an underdamped (0 = 30), current-biased Josephson junction from the zero-
voltage state has been measured. The relevant parameters of the junction were determined in situ
in the thermal regime from the dependence of the escape rate on bias current and from resonant
activation in the presence of microwaves. At low temperatures, the escape rate became indepen-
dent of temperature with a value that, with no adjustable parameters, was in excellent agreement
with the zero-temperature prediction for macroscopic quantum tunneling.

PACS numbers: 74.50.+ r, 03.65.—w, 05.30.—d, 05.40.+j

The observation of macroscopic quantum tunneling
is regarded as a test of whether quantum mechanics is
valid for macroscopic variables, a fundamental ques-
tion' that has only recently been addressed experimen-
tally. The necessary conditions for the observation of
macroscopic quantum tunneling can be realized in the
current-biased Josephson tunnel junction, where the
phase difference between the two superconductors is
the macroscopic variable, and the tunneling occurs
from the zero-voltage state to the nonzero-voltage
state. Previous experiments on a current-biased
Josephson junction 4 or on a superconducting ring in-
terrupted by a Josephson junction have yielded
results that have been interpreted as being consistent
with the theoretical predictions for macroscopic quan-
tum tunneling. In this Letter, we present results of
experiments on a current-biased junction that differ
from earlier measurements primarily in that we deter-
mine in situ all of the relevant parameters using cfassi-
ca/ phenomena. In particular, we measure the im-
pedance shunting the junction at the relevant mi-
crowave frequencies. We are thus able to compare the
experimental results quantitatively with theoretical
predictions with no adjustable parameters.
The current-biased Josephson junction can be

represented as a particle moving in a one-dimensional
tilted cosine potential. s The zero-voltage state of the
junction corresponds to the confinement of the particle
to one well of this potential. After the particle escapes
from this metastable state, it runs freely down the tilt-
ed cosine potential, and a voltage appears across the
junction. For a constant bias current I slightly less
than the critical current Io, the well from which the
particle escapes is given by a cubic potential with bar-
rier height9 5 U = (242I&&bo/3vr ) (1—I/Io) 2, where
4c= h/2e is the flux quantum. We have designed the
experiment so that the total admittance across the
junction, including contributions from the current and
voltage leads, can be represented to a good approxima-
tion by a capacitance C and a resistance R in parallel.

In the zero-voltage state, the plasma frequency co /27r
of small oscillations of the particle at the bottom of the
well is co~ = (2m. Io/C40) 'l [(1—(I/Io) ]'i, while the
damping factor is g = co~RC.
In the thermal regime (k&T ))tto~), the escape of

the particle from the well occurs via thermal activation
at a rate'

I, = a( t~o/2vr)exp( —b, U/kaT), (1)
where a, =4/[(1+ gkaT/1. 8b U)' +1] is of the or-
der of unity in our experiment, kB is Boltzmann's con-
stant, and T is the temperature. In the quantum re-
gime (k&T ((tto~), to lowest order in 1/g the escape
is predicted to occur via macroscopic quantum tunnel-
ing at a rate"

aq Cion exp-
2m

7.2AU ) 0.87
A Cop g (2)

at T =0, where aq = [120m. (7.2b U/tto~)]t z.
To express the experimental measurements of the

escape rate in a way that is as independent as possible
of the parameters of the junction, we introduce the
"escape temperature" T„, defined through the rela-
tion

I' = (to~/27r)exp( —6U/kaT„, ).
In the thermal regime, the theoretical prediction is

T...= T/(1 —p, ),
(3)

(4)
where the magnitude of p, = (kaT/b U)lna, is small
compared with unity. In the quantum regime at T = 0,
the prediction is

ft QJp/ka
7.2(1+0.87/g)(1 —p ) '

where pq = (lt co~/7. 2A U) ina~. The crossover tem-
perature at which the escape rate changes from ther-
mal (temperature dependent) to quantum (tempera-
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FIG. 2. T„, vs T for two values of critical current for
In(ra~/2mi ) =11. The solid and open arrows indicate the
predicted crossover temperatures for the higher and lower
critical currents, respectively. The prediction of Eq. (5) for
the higher critical current is indicated at the left.

perature-independent value observed in our experi-
ment. The contribution of the damping to the predict-
ed value of T„, is —1.5 mK, which is less than the
combined uncertainty of the theoretical prediction and
experiment. Thus we cannot presently make any
statement about the effect of dissipation on quantum
tunneling. We note that the error in the measured
values of T„, in the quantum limit is dominated by
the uncertainty in 4 U, which arises, in turn, from the
uncertainty in Ip. On the other hand, the error in the
predicted value of T„, arises predominantly from un-
certainties in su~ and 0.
Although the low-temperature values of T„,plotted

in Fig. 2 are in good agreement with the T = 0 predic-
tion, nevertheless one should demonstrate that the
flattening of T„, is not due to an unknown, spurious
noise source. To establish that the effective tempera-
ture of the dissipative element was close to T down to
the lowest temperatures of the experiment, we applied
a magnetic field to the junction to reduce the critical
current. After we had corrected the data for the tem-
perature dependence of a„we found that this reduced
critical current still varied very slightly with tempera-
ture, from 1.376 + 0.005 p,A at 800 mK to 1.388
+0.002 p,A at 20 mK. The temperature dependence
of Ip may have arisen because of the sensitivity of Ip
to magnetic field and the fact that the applied field
possibly changed with temperature. In Fig. 2, we have
also plotted T„,for the junction with the lower critical
current for In(t0~/27ri ) =11. At each temperature,
we calculated T„, using the value of Ip measured at
that temperature. The predicted crossover tempera-
ture, 14 mK, is indicated with an open arrow. We ob-
serve that T„,is equal to T to within the experimental
error, although there is a suggestion that T„, is begin-

9.34 9.42
I (+w)

FIG. 3. T„, vs I for a junction with Io——9.489 + 0.007@,A
(a) in the classical regime and (b) in the quantum regime.
Points are the experimental data and solid lines are the
theoretical prediction. The dashed line in (b) is the predic-
tion for zero damping. The error bar on the left and the
right of each figure represents the possible shift in the
theoretical and experimental curves, respectively, due to un-
certainties in the experimental parameters. The solid line
represents T„,= T.

ning to flatten off at the lowest temperature, where
quantum effects are likely to become significant. Thus
we conclude that the flattening of T„,for the junction
with the higher critical current did not arise from
spurious noise sources.
An important difference between the thermal and

quantum regimes may be observed through the weak
dependence of T„, on the bias current, which arises
from the different forms of a, and a~ and from the
current dependence of so~. This behavior is illustrated
in Fig. 3 for Io——9.489@,A. In Fig. 3 (a) we plot T„,vs
I in the thermal regime (T= 151 mK), together with
the prediction of Eq. (4). The decrease of T„,with in-
creasing bias current arises because a, & 1. Within the
uncertainties, the data are in good agreement with
theory. Figure 3(b) shows T„,vs I in the quantum re-
gime (T= 19 mK), together with the prediction of Eq.
(5). In this limit, T„, increases with increasing bias
current through the current dependence of 4U be-
cause a~ && 1; the current dependence of co~ is rela-
tively unimportant. Again, within the experimental
uncertainties, the data are in good agreement with
theory. The very different current dependence of T„,
at low and high temperatures lends further support to
the claim that the escape mechanisms are different in
the two temperature regimes.
In summary, we have measured the escape rate of a

current-biased, underdamped (0 = 30) Josephson
tunnel junction from the zero-voltage state for two
values of critical current, the lower value being

1910



Energy levels in a 
Josephson junction

• Stydy of the first excited state , in addition to the ground state  

• Dégéneration of both states with  :  

• Effective Hamiltonian  

• State  is read by the tunneling probe by sequential tunneling 
( )  ==> Josephson-QuasiParticle-current (JQP). 

 

• Microwave irradiation ( ) as photon-assisted Cooper pair tunneling 
( )

|2⟩ |0⟩

Vg Q0 = CgVg + Qb = me

ℋ = EC( ̂n − Q0/e)2 −
EJ

2 { |0⟩⟨2 | |2⟩⟨0 |}
|2⟩

|2⟩ → |1⟩ → |0⟩
Q0 = CgVg + C2V + Qb

Vac
|0⟩ → |2⟩



Single photon strong coupling

Coherent interaction of a 
superconducting (Josephson 
junctions) two level system with a 
single microwave photon   

Analougus to atome-photon 
interaction in a cavity (Rabi 
coherent oscillations ) 

Studying strong interaction of light 
and matter 

Quantum information processing 

 

|0⟩ ↔ |1⟩

Nature 431 (2004) 162 



«Transmon»  qubits

• Reduction of the to charge 
noise 

• increase of the qubit-photon 
coupling 

• Mantaining sufficient 
anharmonicity for selective 
quit control 

•  Transmon cubits are used 
by Ai Google «sycamore» 
quantum processor

Rotor analogy

ℋrot =
ℒ2

z

2ml2
− mgl cos φ



First quantum processors

• Putting about 50-100 qubits together 

• Applying a serie of gates on one or two qubits. Each gate about tens 
of ns. Full serie about microseconds 

• Reading the final quantum states and repeating the process many 
times. 

• The question of errors is a major issue not addressed in this first 
quantum processors. We are in the  NISQ  era. NISQ for Noisy 
Intermediate Scale Quantum Technologies. 

• Radioactivity is an issue for these quantum processors

John PRESKILL 
Professor of theoretical 
physics in CALTECH 

proposed the NISQ term

Michel LE 
BELLAC, Reflets 
de la Physique, 
n.67 (2020) 4

Atelier technologies 
quantiques des deux infinis, 

Marseille, juin 2021 
Prospectives IN2P3

https://www.refletsdelaphysique.fr/articles/refdp/pdf/2020/04/refdp202067p4.pdf
https://www.refletsdelaphysique.fr/articles/refdp/pdf/2020/04/refdp202067p4.pdf
https://www.refletsdelaphysique.fr/articles/refdp/pdf/2020/04/refdp202067p4.pdf


Sycamore quantum processor
• 54 transmon qubits (1 qubit  was not working) 

• Each qubit tunably coupled to up to four nearest neighbours 

• Single- and Two- qubits gate 

• Simultaneous gate operation on many qubits 

• Microwave line to excite the qubit (two quantum levels) 
frequency 5-7 GHz tunable frequency via a magnetic flux control 

• Each qubit is connected to  a linear resonator to read the qubit 
state 

• New design qubit-qubit coupling : quickly tuned from completely 
off to  40 MHz 

• Processor is cooled down to 20 mK

Nature 574 (2019) 505 https://inspirehep.net/literature/1760347

https://inspirehep.net/literature/1760347


Computational task
• Pseudo random quantum circuit : good benchmark, no structure,  

• Single qubit and two qubits gates for logical operations 

• Sampling final state probability of a state  

• Evaluation of  

• Classically    since all the states are equiprobable  

• Quantum interference some states are more probable than other (like a 
speckled intensity patter produce by light interference) :  

• Quantum logical gates are not perfect (there are errors) and in 
consequence  

•  can be evaluated with classical computing or with the sycamore 
quantum processor

|xi⟩

ℱXEB = 2n⟨P(xi)⟩i − 1

ℱXEB = 0

ℱXEB = 1

ℱXEB ∈ (0,1)

ℱXEB

|xi⟩ = |x1x2, x3 . . . x53⟩

xi = {0,1}

P(xi)

2n quantum states

ℱXEB = 2n⟨P(xi)⟩i − 1

Nature 574 (2019) 505 https://inspirehep.net/literature/1760347 
and supplementary information e-print: 1910.11333

https://inspirehep.net/literature/1760347


Analysis 
• Errors of the quantum logical gate are determine experimentally 

•
Single  qubit gets are choses randomly  

• Highly entragled states increase computational complexity  

• Several quantum computations than can be classically computed are 
performed.

|0⟩, |1⟩ and
1

2 { |0⟩ + |1⟩}

Nature 574 (2019) 505 https://inspirehep.net/literature/1760347

https://inspirehep.net/literature/1760347


Results

Nature 574 (2019) 505 https://inspirehep.net/literature/1760347

https://inspirehep.net/literature/1760347


Results
For a number of cycles m=14 : 

• Perfect agreement with classical computing calculations of the quantum 
circuit 

For a number of cycles m=20 and 53 qubits : 

•  

• after the collection of  samples (about 200 s for ) 

• In a classical computing (Google cloud servers), using the Schrödinger-
Feynman algorithm would cost 50 trillion core-hour (10000 years in a million of 
cores) and consume one petawatt hour of energy (60 PWh is the world 
energy consumption for one years)

ℱXEB = (2.24 ± 0.21) × 10−3

Ns = 30 × 106 106

Quantum Suppremacy ? 



Future

• A quantum computation in a Hilbert space of dimension  has been 
achieve with sycamore processor  

• Sycamore quantum processor has reached  the regime of quantum supremacy  

• Classical cost of simulating a quantum circuit increases exponentially 

• One may expect an a Moore’s Law for quantum processors during the next years  

• More complex quantum algorithms like Shor algorithm could be run in a quantum 
processor in near future 

• In this context, quatum error correction is a major priority in the field to increase the 
computing power of quantum processors

253 = 9 × 1015



Quantum error and Comics rays and radioactivity

• Cosmic rays and latent radioactivity could be a limitation for car 
volume quantum processors due to the induced number of errors 

• Substrat ionisation destroy qubit coherence  

• Observation of high energy radiation in a quantum processor 
(sycamore) 

• Studying the dynamics of  damaging error burst due to cosmic 
rays and latent radioactivity 

• Mitigation of these errors is a challenge for quantum computing 
technology

Nature Physics 13 Dec 2021 https://inspirehep.net/literature/1857959

https://inspirehep.net/literature/1857959


Conclusions


