Cours Physique et Applications Quantiques, UE-D FISE

Cours sur les Postulats. Exercices corrigés :

1. Un qbit est un système quantique avec seulement deux états possibles $|0\rangle = (1,0)$ et $|1\rangle = (0,1)$. Supposons que le qbit est dans un état initial $|\psi(t=0)\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ et qu'il st soumis à un Hamiltonien $\hat{H} = E_0 \times \hat{\sigma}_3$, où $\hat{\sigma}_3$ est la matrice de Pauli :

$$\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{1}$$

(a) Quelle est la probabilité en fonction du temps d'observer le système dans un état $|\phi\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$?

Il faudra d'abord calculer l'évolution de l'état $|\psi(t)\rangle$ à partir de l'équation de Schrödinger, notamment l'équation indépendant du temps qui nous permet de calculer les états et valeurs propres de l'Hamiltonien \hat{H} :

$$\hat{H}|\psi_E\rangle = E_0 \times \hat{\sigma}_3|\psi_E\rangle = E|\psi_E\rangle \tag{2}$$

Comme l'Hamiltonien est déjà diagonal dans la base donnée (1,0) et (0,1), les valeur propres son E_0 et $-E_0$ et les états propres sont :

$$|\psi_{E_0}\rangle = |0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{3}$$

et

$$|\psi_{-E_0}\rangle = |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \tag{4}$$

Du coup la solution $|\psi\rangle$ est donnée par (voir planche 18 du cours sur les postulats) :

$$|\psi(t)\rangle = \frac{1}{\sqrt{2}} \left(e^{-\frac{i}{\hbar}E_0 t} |0\rangle + e^{\frac{i}{\hbar}E_0 t} |1\rangle \right) = \frac{1}{\sqrt{2}} e^{-\frac{i}{\hbar}E_0 t} \left(|0\rangle + e^{\frac{i}{\hbar}2E_0 t} |1\rangle \right)$$
(5)

La probabilité d'observer le système dans l'état $\phi\rangle$ sera $\parallel \langle \phi | \psi(t) \rangle \parallel^2$

$$\langle \phi | \psi(t) \rangle = \frac{1}{\sqrt{2}} \left(\langle 0 | - \langle 1 | \right) \frac{1}{\sqrt{2}} e^{-\frac{i}{\hbar} E_0 t} \left(| 0 \rangle + e^{\frac{i}{\hbar} 2E_0 t} | 1 \rangle \right) \tag{6}$$

$$\langle \phi | \psi(t) \rangle = \frac{1}{2} e^{-\frac{i}{\hbar} E_0 t} \left(\langle 0 | - \langle 1 | \right) \left(| 0 \rangle + e^{\frac{i}{\hbar} 2 E_0 t} | 1 \rangle \right) = \frac{1}{2} e^{-\frac{i}{\hbar} E_0 t} \left(1 - e^{\frac{i}{\hbar} 2 E_0 t} \right) \quad (7)$$

$$\langle \phi | \psi(t) \rangle = \frac{1}{2} e^{-\frac{i}{\hbar} E_0 t} \left(1 - \cos\left(2E_0 t/\hbar\right) - i\sin\left(2E_0 t/\hbar\right) \right) \tag{8}$$

et le module au carré donne :

$$\| \langle \phi | \psi(t) \rangle \|^2 = \frac{1}{4} \Big((1 - \cos(2E_0 t/\hbar))^2 + \sin^2(2E_0 t/\hbar) \Big) = \frac{1}{2} \Big(1 - \cos(2E_0 t/\hbar) \Big)$$
(9)

$$\|\langle \phi | \psi(t) \rangle\|^2 = \sin^2\left(E_0 t/\hbar\right) \tag{10}$$

(b) Calculer la valeur moyenne de l'énergie du système en fonction du temps. La valeur moyenne de l'énergie vaut

$$\langle E(t) \rangle = \langle \psi(t) | \hat{H} | \psi(t) \rangle$$
 (11)

et à partir de l'équation (5)

$$\langle E(t)\rangle = \langle \psi(t)|\hat{H}|\psi(t)\rangle = \frac{1}{2}\Big(E_0 - E_0\Big) = 0 \tag{12}$$

2. En supposant maintenant un Hamiltonien $\hat{H} = E_0 \times \hat{\sigma}_1$, où $\hat{\sigma}_1$ est la matrice de Pauli :

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{13}$$

(a) Quelle est la probabilité en fonction du temps de trouver le système dans un état $|\phi\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$?

Il faudra résoudre l'équation de Schrödinger indépendant du temps pour le nouveau Hamiltonien :

$$\hat{H}|\psi_E\rangle = E_0 \times \hat{\sigma}_1|\psi_E\rangle = E|\psi_E\rangle \tag{14}$$

Il faudra donc diagonaliser la matrice σ_1 pour trouver les états propres

$$\sigma_1 - \lambda I = \begin{pmatrix} -\lambda & 1\\ 1 & -\lambda \end{pmatrix} = 0 \tag{15}$$

donc le déterminant nulle implique que

$$Det(\sigma_1 - \lambda I) = \lambda^2 - 1 = 0 \tag{16}$$

Donc $\lambda = \pm 1$

Pour $\sigma_1 \vec{v}_0 = \vec{v}_0$, on obtient $\vec{v}_0 = 1/\sqrt{2}(1,1)$ et pour $\sigma_1 \vec{v}_0 = -\vec{v}_1$, on obtient $\vec{v}_1 = 1/\sqrt{2}(1,-1)$

L'état initial du système est un état propre $\psi(t=0)\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ et du coup $\psi(t)\rangle=\frac{1}{\sqrt{2}}e^{-\frac{i}{\hbar}E_0t}(|0\rangle+|1\rangle)$

(b) Calculer la valeur moyenne de l'énergie du système en fonction du temps. La probabilité d'observer le système dans l'état ϕ sera $\|\langle \phi | \psi(t) \rangle\|^2$

$$\langle \phi | \psi(t) \rangle = \frac{1}{\sqrt{2}} \left(\langle 0 | - \langle 1 | \right) \frac{1}{\sqrt{2}} e^{-\frac{i}{\hbar} E_0 t} \left(| 0 \rangle + | 1 \rangle \right) = 0 \tag{17}$$

Donc jamais l'état sera observé dans l'état ϕ .