

L'ordinateur quantique

Principes, technologies, défis

Présentation à l'IMT Atlantique - 25 novembre 2022

Boris Bourdoncle

© Google

A hot topic

The Guardian view on quantum computing: the new space race Editorial

The main use of quantum technology might not be to back existing systemsburt o-mate unhackable communication networks of the future

MIT Technology Review

Computing Dec:22, 2018

President Trump has signed a \$1.2 billion law to boost US quantum tech

China will open a \$10 billion quantum computer center and others also investing in quantum computing

Brian Wang | October 10, 2917

Quantum USA Vs. Quantum China: The World's Most Important **Technology Race**

M®R

Cloud

Stratégie nationale sur les technologies quantiques

Straight talk from Moor Insights & Strategy tech industry analysts

Le CNRS

La Recherche

SACLAY 21 janvier 2021

Premiers lauréats pour l'initiative européenne sur les technologies quantiques

Climateria 2018

Accumit > Espanse presses

CREMIT INDUSTRIE INSTITUTIONNEL NUMERODUE PRYSCIDUE

A hot topic

Sources: PitchBook (as of June 7, 2021), BCG analysis.

From quantum mechanics...

QUANTISED ENERGY LEVELS

WAVE-PARTICLE DUALITY

... and information theory...

VON NEUMANN ARCHITECTURE

$$H(X) = -\sum_{i=1}^n P(x_i) \log_b P(x_i)$$
SHANNON ENTROPY

... to one quantum revolution...

TRANSISTOR

LASER

LASER DIODE

MRI

GPS

SMARTPHONES

COMPUTERS

SUPERPOSITION

Classical bit: 0 or 1

Quantum bit: $\alpha | 0 \rangle + \beta | 1 \rangle$

MEASUREMENT

ENTANGLEMENT

MEASUREMENT

 $\alpha |0\rangle + \beta |1\rangle$ $\hat{\boldsymbol{N}} = |\boldsymbol{\beta}|^2$ Result '1' State $|1\rangle$

ENTANGLEMENT

Applications of the 2nd quantum revolution

Discover Q About QF

The future is Quantum.

The Second Quantum Revolution is unfolding now, exploiting the enormous advancements in our ability to detect and manipulate single quantum objects. The Quantum Flagship is driving this revolution in Europe

LEARN MORE

QUANTUM

ROADMAP

qt.eu

The quantum technologies roadmap: a European community view

Antonio Acin12, Immanuel Bloch24, Harry Buhrman2, Tommaso Calarco2, Christopher Eichler2, Jens Eisert⁴, Daniel Esteve⁹⁽²⁾, Nicolas Gisin¹⁰, Steffen J Glaser¹¹, Fedor Jelezko⁴, Stefan Kuhr¹², Maciej Lewenstein1,2, Max F Riedel6, Piet O Schmidt18,14, Rob Thew10, Andreas Wallraff7, Ian Walmsley13 and Frank K Wilbelm¹⁶

What makes a good quantum computer

DIVINCENZO'S CRITERIA

- 1. A scalable physical system with well-characterised qubits
- 2. The ability to initialise the state of the qubits
- 3. Long relevant decoherence times
- 4. A universal set of quantum gates
- 5. A qubit-specific measurement capability

Fortschr. Phys. 48 (2000) 9-11, 771-783

The Physical Implementation of Quantum Computation

DAVID P. DIVINCENZO

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 USA

A scalable system with well-characterised qubits

ATOM + ENERGY LEVELS

ELECTRON + SPIN

PHOTON + POLARISATION

The ability to initialise the state of the qubits

ATOM + ENERGY LEVELS

ELECTRON + SPIN

PHOTON + POLARISATION

Long relevant decoherence time

$\rho = |\psi\rangle\langle\psi|\otimes|e\rangle\langle e|$

DIFFICULTY:

We need isolated qubits to avoid decoherence

BUT

We need interactions to control the qubits and make them interfere

A universal gate set

Universal = can implement any unitary transformation \Rightarrow continuous!

Hadamard
$$-\mathbf{H} = \frac{|0\rangle \rightarrow (|0\rangle + |1\rangle)/\sqrt{2}}{|1\rangle \rightarrow (|0\rangle - |1\rangle)/\sqrt{2}}$$

S gate $-\mathbf{S} - \begin{vmatrix} 0 \\ 0 \end{vmatrix} \rightarrow \begin{vmatrix} 0 \\ 1 \end{pmatrix} \rightarrow i \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ C-NOT gate

 $\boxed{\mathbf{r}} \quad \begin{vmatrix} 0 \rangle \to | 0 \rangle \\ | 1 \rangle \to e^{i\pi/4} | 1 \rangle$ T gate

\Rightarrow 3 SINGLE QUBIT GATES + 1 TWO-QUBIT GATE = APPROXIMATE ALL UNITAIRES

A qubit-specific measurement capability

ATOM + ENERGY LEVELS

ELECTRON + SPIN

PHOTON + POLARISATION

Models of quantum computing

MEASUREMENT-BASED QUANTUM COMPUTING

PHYSICAL REVIEW A 68, 022312 (2003)

Measurement-based quantum computation on cluster states

Robert Raussendorf, Daniel E. Browne,* and Hans J. Briegel Theoretische Physik, Ludwig-Maximilians-Universität München, München, Germany (Received 18 February 2003; published 25 August 2003)

Physical implementations of a quantum computer

TRAPPED IONS

SUPERCONDUCTING **QUBITS**

SILICON QUBITS

NEUTRAL ATOMS

Superconducting qubits

Superconducting qubits

- Electronic
- Several degrees of freedom
- Easy and fast control

Cryogeny (~mK)

- Noise
- Decoherence
- Crosstalk
- Wiring and connectivity

Trapped ions

QUANTINUUM

Trapped ions

- Long coherence
- Connectivity
- 4K to room temperature

- Scalability (1D structure)
- SizeOperation time

Photons

- Connectivity
- 4K to room temperature
- Connection with network
- Single-qubit gates

- Photon loss
- Source efficiency
- Two-qubit gates

Several platforms, many actors

Benchmarking

NUMBER OF QUBITS

CONNECTIVITY

1- AND 2-QUBIT **GATE ERROR**

Assessing the quality of near-term photonic quantum

Quandela SAS, 7 Rue Léonard de Vinci, 91300 Massy, France

Sergio Boixo 🖂, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang,

The issue of errors in quantum computing

CONTINUOUS ERRORS

Quantum bit: $\alpha | 0 \rangle + \beta | 1 \rangle$

DECOHERENCE

Long term: Error correction + fault tolerance

FAULT-TOLERANCE

THRESHOLD THEOREM

The threshold theorem: Provided the noise in individual quantum gates is below a certain constant threshold and obeys certain physically reasonable assumptions, it is possible to reliably perform an arbitrarily long quantum computation, with only a small overhead in the size of the circuit necessary to ensure reliability.

Quantum computational advantage

QUANTUM COMPUTING AND THE ENTANGLEMENT FRONTIER

JOHN PRESKILL

« ... characterize computational tasks performable by quantum devices, where one could argue persuasively that no existing (or easily foreseeable) classical device could perform the same task, disregarding whether the task is useful in any other respect. »

Quantum Computing in the NISQ era and beyond

John Preskill

Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena CA 91125, USA 30 July 2018

Quantum supremacy using a programmable superconducting processor

rank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buel, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, ... John M. Martinis 🖂 🛛 🕂 Show authors

Nature 574, 505–510 (2019) Cite this article

Quantum computational advantage using photons

Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi, Askarani, Fabien Rortais, Trevor Vincent, Jacob F. F. Bulmer, Filippo M. Miatto, Leonhard Neuhaus, Lukas G. Helt, Matthew J. Collins, Adriana E. Lita, Thomas Gerrits, Sae Woo Nam, Varun D. Vaidya, Matteo Menotti, Ish Dhand, Zachary Vernon, Nicolás Quesada 🖂 & Jonathan Lavoie 🖂

Nature 606, 75–81 (2022) Cite this article

Applications

SIAM J. COMPUT. Vol. 26, No. 5, pp. 1484-1539, October 1997 © 1997 Society for Industrial and Applied Mathematics

POLYNOMIAL-TIME ALGORITHMS FOR PRIME FACTORIZATION AND DISCRETE LOGARITHMS ON A QUANTUM COMPUTER*

Peter W. Shor[†]

Factorisation with exponential speedup

A fast quantum mechanical algorithm for database search

Author: 🔝 Lov K. Grover Authors Info & Claims

STOC '96: Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing • July 1996 • Pages 212-219 • https://doi.org/10.1145/237814.237866

Unstructured search with quadratic speedup

Variational quantum algorithms

M. Cerezo Z, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio & Patrick J. Coles 🖂

Nature Reviews Physics 3, 625-644 (2021) Cite this article

Applications

SIAM J. COMPUT. Vol. 26, No. 5, pp. 1484–1539, October 1997

© 1997 Society for Industrial and Applied Mathematics 009

POLYNOMIAL-TIME ALGORITHMS FOR PRIME FACTORIZATION AND DISCRETE LOGARITHMS ON A QUANTUM COMPUTER⁻

Peter W. Shor[†]

NIST time line to define new encryption standards

Post-quantum crypto

Classical crypto with no known exponential quantum speedup

Mosca - 1/2 chance of breaking RSA-2048

BASIC ONE-QUBIT GATES IMPLEMENTATION IN OPTICS

Pauli Y

Pauli Z

Hadamard

$$|0\rangle \qquad H \qquad \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

$$|1\rangle \qquad H \qquad \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

ARCHITECTURE OF AN OPTICAL QUANTUM COMPUTER.

Quandela

Hardware at Quandela

Software development at Quandela

Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing

Nicolas Heurtel¹, Andreas Fyrillas^{1,2}, Grégoire de Gliniasty¹, Raphaël Le Bihan¹, Sébastien Malherbe³, Marceau Pailhas¹, Boris Bourdoncle¹, Pierre-Emmanuel Emeriau¹, Rawad Mezher¹, Luka Music¹, Nadia Belabas², Benoît Valiron⁴, Pascale Senellart², Shane Mansfield¹, and Jean Senellart¹

La start-up française Quandela a réuni, lors d'un hackathon, des étudiants et des chercheurs pour résoudre des problèmes à l'aide d'une machine qui fonctionne avec des « qubits » photoniques. Une avancée européenne qui vient concurrencer les Américains et les Britanniques.

Par David Larousseria

Publie le 52 novembre 2022 à 12h00 - Mis à jour le 22 novembre 2022 à 12h05 - 🙆 Lacture 4 min.

Software development at Quandela

perceval.quandela.net

Some resources

Quantum Computing in the NISQ era and beyond

John Preskill

Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena CA 91125, USA 30 July 2018

Introduction to Quantum Information Science Lecture Notes

Scott Aaronson¹

Lecture Notes for Physics 229: Quantum Information and Computation

> John Preskill California Institute of Technology

Frédéric Magniez Cours, séminaires, colloques

Informatique et sciences numériques

défie la thèse de Church-Turing

Collogue

Lecon inaugurale

Cours Frédéric Magniez Algorithmes quantiques

Algorithmes quantiques

MICHAEL A. NIELSEN AND ISAAC L.CHUANG

