

Introduction à la

simulation quantique

Antoine Browaeys

Laboratoire Charles Fabry, Institut d'Optique, CNRS, FRANCE

IMT Nantes, 10 novembre 2022

1. Physique à N-corps, simulation quantique et systèmes quantiques synthétiques

2. Exemples de simulateurs quantiques: ions et atomes

- 3. Exemples de simulation quantiqueA. Exploration du diagramme des phases
 - B. Dynamique hors-équilibre

Le problème à N-corps en physique

But: comprendre ensembles de particules quantiques en interaction

Microscopique

Macroscopique

Ce qu'il faut résoudre:

$$i\hbar\frac{\partial\Psi}{\partial t} = H_{\rm tot}\Psi$$

$$H_{\text{tot}} = \sum_{i=1}^{N} -\frac{\hbar^2}{2m_i} \nabla_i^2 + \sum_{i=1}^{N} \sum_{j \neq i} \frac{q_i q_j}{r_{ij}} + \frac{\mu_{\text{B}}^2}{r_{ij}^3} \mathbf{s}_i \cdot \mathbf{s}_j$$

 $N \approx 10^{23}$!!!

Complexité quantique: difficulté exponentielle

Fonction d'ondes à *N*-corps: $\Psi = \Psi(1, 2, ..., N)$

« Taille » de la fonction d'onde ??

Exemple: particules à 2 d. de liberté (spin...) $\psi_i = \begin{pmatrix} a \\ b \end{pmatrix}$

 $\Rightarrow \Psi$ nécessite 2^N composantes

Coder sur ordi. Ψ pour $N = 40 \Rightarrow 2^{50} \sim 10^{15} = 1000$ To RAM !!

Record de calcul *ab-initio* (2022) *N* ~ 50

Des méthodes d'approximation...

$$H_{\text{tot}} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} - \frac{e^2}{r_i} + \sum_{i=1}^{N} \sum_{j \neq i} \frac{e^2}{r_{ij}}$$

Approx 1 : négliger interactions (mauvaise...)

$$H_{\text{tot}} = \sum_{i=1}^{N} H_i \Rightarrow \Psi(1, 2, \dots N) = \psi_1 \psi_2 \dots \psi_N, \quad H_i \psi_i = E_i \psi_i$$

Approx 2 : champ moyen + perturbation (phys. atom, nucléaire, moléculaire, théorie des bandes phys. solide...)

$$H_{\text{tot}} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + V(r_i) + \left[\sum_{i=1}^{N} \sum_{j \neq i} \frac{e^2}{r_{ij}} - \frac{e^2}{r_i} - V(r_i)\right]$$

Méthode + raffinée : Monte Carlo Quantique, fonctionnel densité, DMRG, t-DMRG, Tensor Networks, Matrix Product states...

... qui ne marchent pas toujours !

Quand interactions dominent (systèmes fortement corrélés)

Exemples

superfluidité

supraconductivité

magnétisme

neutron star

Simulation quantique: exemple de démarche

Observation phénomène compliqué Ex: supraconductivité haute T_c

Simulation quantique: exemple de démarche

Observation phénomène compliqué Ex: supraconductivité haute T_c

Problème à N-corps et systèmes quantiques synthétiques

R.P. Feynman

Simulating Physics with Computers, Int. J. Theo. Phys. 21 (1982)

i.e. systèmes quantiques **contrôlés** réalisant des **hamiltoniens à** *N***-corps** (y compris artificiels...)

Plus grande programmabilité que systèmes réels (geométrie, paramètres...)

╋

Nouvelles sondes, méthodes d'étude (ex.: dynamique...)

Qu'est ce que l'on peut simuler et à quoi ça peut servir...?

Supra-conductivité haute Tc

Vers le stockage de l'électricité?

Propriétés de conduction des métaux influence du désordre et des interactions

Magnétisme quantique

vers de nouveaux aimants pour moteurs électriques, stockage information...? Vers des métaux meilleurs conducteurs électriques?

Les systèmes à N-corps les plus simples: spins en interaction

Particules de spin 1/2 sur un réseau:

Ising
$$\hat{H} = \sum_{i \neq j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$

XY model
$$\hat{H} = \sum_{i \neq j} J_{ij} \left(\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+ \right)$$

Magnétisme

Propriétés de transport

Modèles génériques pour étude de transition de phase, dynamique...

Le programme...

1. Physique à N-corps, simulation quantique et systèmes quantique synthétiques

2. Exemples de simulateurs quantiques: ions et atomes

3. Exemples de simulation quantique

A. Exploration du diagramme des phases

B. Dynamique hors-équilibre

Le programme...

1. Physique à N-corps, simulation quantique et systèmes quantique synthétiques

- 2. Exemples de simulateurs quantiques
 - A. lons piégés
 - B. Atomes ultra-froids dans des réseaux optiques
 - C. Atomes froids dans des pinces optiques

3. Exemples de simulation quantique

Manipulation de particules individuelles: Le point de vue d'un père fondateur...

..., nous ne faisons **jamais** d'expériences avec **juste un** électron, un atome ou une (petite) molécule. Dans des expériences de pensée, nous supposons parfois que nous le faisons ; cela conduit invariablement à des conséquences **ridicules**.

E. Schrödinger British Journal of the Philosophy of Science III (10), (1952)

60 ans plus tard...

S. Haroche (France)

D. Wineland (USA)

« pour le développements de méthodes expérimentales permettant de mesurer et de manipuler des systèmes quantiques individuels »

Piégeage de particules uniques: les débuts...

W. Neuhauser, M. Hohenstatt, and P. E. Toschek Institut für Angewandte Physik I der Universität Heidelberg, D-69 Heidelberg, Federal Republic of Germany

> H. Dehmelt Department of Physics, University of Washington, Seattle, Washington 98195 (Received 11 September 1979)

Ingénierie Quantique avec des systèmes individuels

Atomes et molécules froides

lons piégés

Photons

Centres NV

Spin électronique

Circuits supracond.

Polaritons (½ cond.)

Ingénierie Quantique avec des systèmes individuels

Centres NV

Spin électronique

Circuits supracond.

Polaritons (½ cond.)

Correspondance entre système à 2 niveaux et spin 1/2

Atomes

Correspondance entre système à 2 niveaux et spin 1/2

Atomes « à 2 niveaux »

Exemples de réseaux d'atomes individuels

lons piégés

Atomes dans réseaux optiques Atomes dans pinces optiques

Scalable: plus de 100 atomes

Adressable: manipulations et mesures locales

 $\langle \sigma_i^{\alpha} \rangle, \langle \sigma_i^{\alpha} \sigma_j^{\beta} \rangle, \dots$

Programmable: contrôle géométrie, interactions...

Pourquoi ingénierie quantique est-elle si difficile ?

Superposition quantique = très fragile!! Décoherence

Plus c'est gros, plus ça « décohère »...

Le programme...

1. Physique à N-corps, simulation quantique et systèmes quantique synthétiques

Exemples de simulateurs quantiques
 A. lons piégés

B. Atomes ultra-froids dans des réseaux optiques

C. Atomes froids dans des pinces optiques

3. Exemples de simulation quantique

Piégeage d'ions refroidis par laser

Piège de Paul (RF + statique)

Piège de Paul linéaire

$\begin{array}{l} \mbox{Répulsion de Coulomb} \\ \Rightarrow \mbox{Cristal ionique} \end{array}$

Simulateur à ions piégés: modèles de spin

Cristal de Coulomb

« Coder » le spin 1/2

Force lumineuse dépendant de l'état

Les Hamiltoniens

$$H_{\rm XY} = \sum_{i,j} J_{ij} (\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+)$$

$$H_{\text{Ising}} = \sum_{i,j} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x + \frac{\delta}{2} \sum_i \hat{\sigma}_i^z$$

 $J_{ij} \approx \frac{J_0}{|i-j|^{\alpha}} , \ \alpha = 0.5 - 2.5$

Le programme...

1. Physique à N-corps, simulation quantique et systèmes quantique synthétiques

- 2. Exemples de simulateurs quantiques
 - A. lons piégés
 - B. Atomes ultra-froids dans des réseaux optiques
 - C. Atomes froids dans des pinces optiques

3. Exemples de simulation quantique

Atomes ultra-froids dans les réseaux optiques

Force dipolaire: $\mathbf{F} \propto -\nabla I(\mathbf{r})$

 $I(x) = 2E_0^2(1 + \cos 2kx)$

Chaque site contient 1 atome !

Boson (Rb, Na, ⁷Li, ³⁹K, ⁴He*), Fermion (⁶Li, ⁴⁰K), Magnetic atoms (Cr, Dy...)

3D M. Greiner thesis $\lambda/2 = 0.5 \ \mu m$ Quantum gas microscope Single-site resolution (< 1 µm) NA = 0.716 µm

Harvard, MPQ

Réseaux optiques: modèles de Hubbard et de spin

Compétition effet tunnel / interaction

U contrôlable par B!!

Modèles d'Hubbard

$$H = -t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + \text{h.c.}) + \frac{U}{2} \sum_i n_i (n_i - 1)$$

Modèle le plus simple: conductivité / interaction

Le programme...

1. Physique à N-corps, simulation quantique et systèmes quantique synthétiques

2. Exemples de simulateurs quantiques

A. lons piégés

B. Atomes ultra-froids dans des réseaux optiques

C. Atomes froids dans des pinces optiques

3. Exemples de simulation quantique

SLM pattern

Nogrette, PRX (2014)

Initial configuration

Assembled configuration

SLM pattern

Nogrette, PRX (2014)

Assembled arrays of individual atoms ($N \sim 200$)

2D

1D

Fluorescence: single shot!!

Barredo, Nature 2016 ; Schymik, PRA 2020

Random

~100 μm

SLM pattern

Nogrette, PRX (2014)

(averaged)

Barredo, Nature (2018)

Barredo, Nature 2016 ; Schymik, PRA 2020

Arrays of interacting Rydberg atoms

Arrays of atoms

Rydberg atoms

Interactions between Rydberg atoms and spin models

Quantum Ising

$$\hat{H} = \sum_{i \neq j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$

XY model $\hat{H} = \sum_{i \neq j} J_{ij} \left(\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+ \right)$

Rydberg occupation number

Les oscillations de Rabi à un atome

Oscillations de Rabi (1930s!): émission stimulée

detection

Excitation

Initialisation

Quantum Ising-like model (s=½):

$$H = \frac{\hbar\Omega}{2} \sum_{i} \sigma_x^i + \hbar\delta \sum_{i} \hat{n}_i + \sum_{i < j} \frac{C_6}{R_{ij}^6} \hat{n}_i \hat{n}_j$$

Laser: B_{\perp} B_{\parallel} Spin-spin interaction

1. Physique à N-corps, simulation quantique et systèmes quantique synthétiques

2. Exemples de simulateurs quantiques: ions et atomes

3. Exemples de simulation quantique
 A. Exploration du diagramme des phases
 B. Dynamique hors-équilibre

Diagramme des phases

Etat fondamental d'un système en fonction de paramètres de contrôle

Diagramme des phases de l'eau (P,T)

Système quantique: $\langle \Psi_{\rm f} | O | \Psi_{\rm f} \rangle (T, B, M...)$

Atoms in optical lattices implements Hubbard models

Competition tunneling / interaction

$$H = -t \sum_{\langle i,j \rangle,\sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.) + U \sum_{i} n_{i\downarrow} n_{i\uparrow}$$

Fermi-Hubbard models

U tunable by B-field!!

The simplest model to describe interplay conductivity / interactions

Accessing the AF phase using a quantum simulator

Greiner, Nature 2017

Also: Bloch (MPQ), M. Koehl (Bonn), Kuhr (Glasgow), Zwierlein (MIT), Thywissen (Toronto)...

2D Ising anti-ferromagnet on a square

Ex of antiferromagnets: MnO, FeO, CoO, NiO, FeCl₂...

2D Ising anti-ferromagnet on a square

Known by Quantum Monte-Carlo Never measured in 2D...!!!

Fey, Schmidt PRL 2019 Sachdev & Lukin PRL 2020

2D Ising anti-ferromagnet on a square

Preparation of a 2D Ising anti-ferromagnet on a square

10 × 10 square array

Scholl et al. Nature (2021)

Perfect AF (Néel) ordering!

1D: Pohl PRL 2010; Bloch Science 2015; Lukin Nature 2017, 2019; **2D:** Lienhard PRX 2018, Bakr PRX 2018; Lukin Nature 2021

Preparation of a 2D Ising anti-ferromagnet on a square

10 × 10 square array

n=75s

Scholl et *al.* Nature (2021)

Staggered magnetization: $m_{\text{stag}} = \langle |n_A - n_B| \rangle$ Accurate **MPS** limited $m_{
m stag}$ 000 000 PM to 10 x 10 0000 (14 days!!) 0000 AF 0000 0000 00 δ 2 6 $t_{\rm off}(\mu s)$

Including experimental imperfections: $U_{ij}, \Omega_i, \delta_i$, real ramp...

Preparation of a 2D Ising anti-ferromagnet on a square

Scholl et *al.* Nature (2021)

14x14 square array

182-atom antiferromagnetic cluster!

2022: Data beyond *N* > 100 to test of new tensor network methods...!!

M. Heyl, M. Dalmonte, S. Montangero

Conclusion

Useful quantum simulators already exist, and challenge theory!!

A very active field internationally

Programmable Atomic Large-Scale Quantum Simulation (10 groups + 5 industries, coord.: A. Browaeys & I. Bloch)

Startups recently created to develop industry graded simulators

Applications: scientific computing, optimization in finance and industry...

PAS@uanS

Conclusion: Quantum Simulators can do more...!

Quant. sim. = machine to prepare quantum states

Optimization problems

Mapped onto Ising model

$$H = \sum_{i} h_{i} n_{i} + \sum_{i < j} J_{ij} n_{i} n_{j} , \quad n_{i} = 0, 1$$

Solution = ground-state

Quantum metrology

Outlook: towards Industrial Simulators

www.pasqal.io

Rydberg based technology

- Founded april 2019 (90 staff sept. 2022)
- **Applications**: scientific computing, optimisation in finance, industries...
- Software et hardware

Henriet, Quantum 2020

From a lab experiment to an industrial machine...

Jobs opportunities !!

References:

"Quantum Simulation", I.M. Georgescu et al., Rev. Mod. Phys. 49, 153 (2014)

"Quantum Simulation with ultra-cold atoms in optical lattices", C. Gross and I. Bloch., Science 3**57**, 995 (2017)

"Many-Body Physics with individually controlled Rydberg Atoms", A. Browaeys and T. Lahaye, Nat. Phys. **16**, 132 (2020)

"Programmable quantum simulation of spin systems with trapped ions", C. Monroe *et al.*, arXiv:1912.07845

